Sapphire Energy, Inc.

DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

Sapphire Energy - Integrated Algal Biorefinery EE0002884

Original project goals (2009)

Project objectives

Demonstrate the technical and economic feasibility of an algae-to-drop-in green fuels process that will form the basis for the development of a series of commercial scale biorefineries.

- Deploy the algae to green fuels process at the pre-commercial scale
- Integrate the key process for the entire production chain from feedstock to transportation fuel.
- Continue to reduce the capital and operating costs through an ongoing development effort.

Sapphire background information

Corporate HQ San Diego, CA

- -Full Suite of Strain Development
- -Established in 2007

Field Testing Las Cruces, NM

- -22-acre facility with >70 active ponds
- -Operating since 2008

Commercial Facility Columbus, NM

- -96 Acres of Algae Production Ponds
- -Operating Since 2012

Quad Chart Overview

Timeline

Project start - Jan 2010
Project end -April 2015
Percent complete -100% against revised

Budget

	Total Costs FY 10 – FY 12	FY 13 Costs	FY 14 Costs	Total Planned Funding (FY 15- Project End Date
DOE Funded	31.1m	2.8m	1.7m	.3m
Project Cost Share (Comp.)*	46.7m	3.5m	1.7m	.3m

^{*}If there are multiple cost-share partners, separate rows should be used.

Barriers

- Debris, foreign materials and weather impacts on productivity
- Open pond invasion and contamination impacts on productivity
- ✓ Low cost harvest for dilute cultures
- ✓ CO2 utilization efficiency
- Oil yield on biomass
- Opex/capex especially in low crude price environments

Partners

- ✓ Harris Group
- ✓ Brown and Caldwell
- ✓ AMEC/Geomatrix
- ✓ Linde (CO2 and conversion)
- ✓ Tesoro (offtake agreement)
- ✓ Phillips 66 (upgrading and part 79 registration for on road diesel fuel)
- ✓ DOE co-processing grant

Overview of the integrated end-to-end process

Overall Status and Progress of the Project

IABR To Date

Constructed Facilities

- Columbus 100 acre facility fully constructed and operable
 - On time and on budget
- Las Cruces Extraction Expansion (PDU) completed October 1, 2012

Overall Process

- Stable, reliable and suitable strains (including new strains and strain transitions) for year round production at Columbus
- Primary unit operations de-risked and at scale suitable for process demonstration
- Produced over 2,000 gallons of crude oil

Upgraded bio crude oil to produce on specification ASTM975 ULSD and applied for US EPA Part 79 **Fuel Certification**

Continuously cultivated algae for 29 months in Columbus, New Mexico

- Site of cultivation and harvest
- 520+ tonnes of algae biomass produced
- 1760+ tonnes of CO₂ consumed

Produced Green Crude for 24 months in Las Cruces, New Mexico

- Site of conversion and extraction and finished product storage
- 2000+ gallons of Green Crude produced since 2012
- Joint development refining program with Phillips 66

Highlights in 2014

Successes:

- ✓ Over 240 tonnes of biomass produced
- ✓ Highest ever quarterly biomass productivity of nearly 18 g/m2/d
- ✓ Overall 2014 annual productivity ~2X the 2013 performance.
- √ 3rd Quarter DAF efficiency of nearly 90% achieved
- ✓ Continued successful integrated pest management (continuous cultivation of 107 for over 22 months)
- ✓ Produced over 1000 gallons of Green Crude
- ✓ Continued to make steady progress on variable cost reduction

Challenges:

- ✓ Debris, foreign materials and weather impacts
- ✓ Pond invasion and contamination
- ✓ Limited conversion and extraction capacity
- ✓ Remote location/lack of infrastructure.

Highlights in 2014

- Technology development in support of next phase IABR continued in 2014
 - Strain improvement
 - Cultivation and crop protection improvements
 - New pond prototypes developed
 - Basis for next generation conversion and extraction unit developed
 - **Process Integration**
- Advanced all key process performance metrics
- Continued overall progress
 - Benefits of lab to pilot to field feedback mechanisms
 - Informed program to improve lab to field transition
- Maintained rigorous stage-gate project and company decision making

History

Timeline of events at the IABR since start of operations

Downstream (refining)

Sapphire's algae bio-crude quality supports many upgrading options within existing refining infrastructure

Oil upgrading

Sapphire's algae bio-crude is not a finished transportation fuel

- Fungible with petroleum derived crude oils and intermediate feed stocks (e.g., gasoil)
- Transported through existing petroleum infrastructure

There are many upgrading options

- In traditional petroleum refineries to make a co-processed bio fuel
- In stand alone biofuel upgrading facilities to make a 100% bio-derived product

No exotic process conditions or equipment required to upgrade Sapphire's algae bio-crude

Sapphire has tested of many options for refinery co-processing of Green Crude oil

Status of process design progress for Phase 2 (next gen) of IABR demonstration.

Design developed for large scale demo of next generation pond and harvest systems

- Extensive use of CFD tools to model novel pond designs, motive systems and primary harvest approaches
- Novel pond designs (lower capex and opex) field pilots in Las Cruces
- Novel harvest primary dewatering step pilot has been field trials in Las Cruces

Design developed for large scale demo of next generation conversion/extraction process

- Bench scale testing has been completed, validating process conditions, vessel configuration and solvent selection
- Testing of novel heat exchanger application performed to insure reliable heat integration
- Detailed high viscosity material handling/pump designs and vendors quotes have been obtained
- Reactor design has been agreed upon vendor quote obtained
- Cost estimate has been received and evaluated by Linde and Sapphire project teams and management

Status

Using information learned during operation and design of phase 2 requirements

- Required capital investment requirements for deployment of next generation unit operations exceed budgets deemed necessary to demonstrate commercial scale feasibility
- Additional R&D required to improve performance and reduce capital and operating costs
- Balance of original schedule period does not provide sufficient opportunity to complete the balance of R&D to deliver the full scope of the IABR
- Underlying investment and economic conditions dictate adjustments to Sapphire's business direction

IABR status

The IABR has helped define algae to fuel

- 2009 State of technology has been entirely revised
- Commercial strains are now:
 - Viable for large scale outdoor use in host natural environments
 - Strain improvement progression will be via traditional crop selection, advancement and improved mechanisms

Crop protection:

- Pioneered large scale commodity based chemical, biological, and agricultural methods
- Consistent with large scale agricultural practices and protocols

Harvesting and Handling:

Pioneered effective primary de-watering methods using a wet slurry eliminating the need to dry algae to a powder while significantly increasing availability of recoverable oil

Conversion and Extraction:

- Determined that no 2009 vendor extractions solutions were viable
- Established technical viability of Sapphire's proprietary processes for commercial application

GHG Footprint:

Data from IABR was analyzed by researchers at UVA who concluded fuels produced via this process had a 30+% reduction in GHG vs. petroleum derived fuels

IABR status

The IABR has helped define algae to fuel

Refining and Products:

- Established critical need to recycle all available original process inputs
- IABR provided biocrude oil required for upgrading into finished transportation fuels and application for US EPA Part 79 certification

Scale:

Helped define and differentiate the scale requirements for meaningful algae to fuel projects and integration with existing industry business and infrastructure platforms

Technoeconomics:

 Reset of techno-economic metrics needed for true commercialization of an integrated algae to oil process