DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

Waste to Wisdom: Utilizing forest residues for the production of bioenergy and biobased products

March 23rd, 2015 Technology Area Review

Han-Sup Han Humboldt State University

Forest Residues

97 million dry tons @ \$60/dry ton in 2012: Billion-Ton Update (2011)

Goal Statement

- Goal: to develop biomass conversion technologies and inwoods operational logistics that facilitate utilization of forest residues for the sustainable production of biofuels, bioenergy, and biobased products.
- Expected Outcomes: Positive environmental and economic impacts, and social benefits throughout the U.S., including...
 - Replacement of fossil fuels,
 - Reduction of greenhouse gas emissions,
 - Improvement of the economics of forest management activities,
 - New jobs in the forest and bioenergy sectors,
 - Promotion of economic development in rural areas.

Quad Chart Overview

Timeline

- Official start date: 9/30/2013
 - Contracted and funds available in May 2014
- Official end date: 9/30/2016
- Percent complete: 30%

Budget

	Total Costs FY 14-FY15	FY 14 Costs	FY 15 Costs	Total Planned Funding (FY 14-Project End Date
DOE Funded	\$553,289	\$553.289	\$2,138,900	\$5,881,974
Project Cost Share	\$265,444	\$265,444	\$571,211	\$1,570,883

- Production of quality feedstocks
- Development of biomass conversion technologies
- Evaluation of environmental and economic benefits

Partners

- Partners/Collaborators
 - o DOE
 - o USDA Forest Service
 - Land-Grant Universities
 - Forest Products Co.
 - Biomass Engineering Co.
- Project Management:
 - Humboldt State University

Project Management

Partners (Principal Investigators - PI)

Task Area	Name	Institution	Invol.* (%)	Expertise
	Han-Sup Han	Humboldt State Univ.	18	Forest Operations
TA1	John Sessions	Oregon State Univ.	5	Transportation
	James Dooley	Forest Concepts Inc.	5	Forest Engineering
	Arne Jacobson	Humboldt State Univ.	14	Env. Engineering
TA2	Jonah Levine	Biochar Solutions Inc.	13	Biochar
TAZ	Aaron Norris	Norris Thermal Tech.	10	Torrefaction
	John Crouch	Pellet Fuels Institute	5	Pellet Equipment
	Debbie Page-Dumroese	US Forest Service	4	Forest Soils
	Elaine Oneil	CORRIM	2	Life Cycle Analysis
	E.M. Bilek	US Forest Service	0	Forest Economics
TA3	Richard Bergman	US Forest Service	8	Life Cycle Analysis
TAS	Ivan Eastin	Univ. of Washington	12	Forest Marketing
	Craig Rawlings	For. Business Network	5	Public Outreach

*Partners involved in the project, expressed as % of project funding from DOE

1 - Project Overview

- **History:** forest residues underutilized and wasted due to high collection and transportation costs and low market values
- **Context:** Converting forest residues into biochars, torrefied wood chips, and briquettes in a forest operations site
- Objectives:
 - TA 1: Production of quality feedstocks from forest residues and development of innovative biomass operations logistics
 - TA 2: Development of biomass conversion technologies (gasification, torrefaction, and briquette) that will be operated at a forest operations site
 - TA 3: Determining economic and environmental success of utilizing forest residues for production of biofuels, bioenergy, and biobased products

1 - Project Overview (cont'd)

In-woods Biomass Conversion:

- ✓ Decrease transportation costs
- ✓ Increase product values
- Improve feedstock properties for energy production

Forest Residues

2- Approach (Technical)

- Feedstocks Development (TA1):
 - Sort and process forest residues to produce quality feedstocks
 - Compact forest residues into high-density bales
 - Develop logistics models integrating both in-woods biomass operations and conversion technologies

Biofuels and Biobased Products Development (TA2):

- Evaluate the technical performance of three technologies (biochar, torrefaction, and densification systems) that are designed to run in a forest operations site
- Building scale-up biomass conversion technologies from existing pilot systems that were proven to be functional

• Biofuels and Biobased Products Development Analysis (TA3):

- Evaluate the financial feasibilities of the technologies
- Determine their economic and social impacts
- Analyze the ecological sustainability of the processes

2 – Approach (Management)

Critical success factors:

- Collaboration between a wide range of researchers and companies
- Regular monitoring of project progress by three task coordinators
- Project accountants and coordinators provide administrative and technical supports such as instructions and templates for invoices and reports

Potential challenges:

- Meeting project end date with delayed funding
- Coordinating a large team with diverse research tasks

Project management structure:

- One PI overseeing each task area and coordinating with two task area team leaders with clearly defined responsibilities
- Management coordination through monthly project management conference calls with DOE project manager and monitor
- Annual research team meetings

3 - Technical Accomplishments / Progress / Results

Task Area – 1, Feedstock Development

Progress meeting project objectives:

- Determined additional cost to sort and arrange
 residual woody biomass derived from timber harvest
- Characterized the quality of feedstock generated from sorted residues
- Tested the productivity and effectiveness of two different screening machines (Star and Deck)
- Improved design of baler to collect and densify forest residues
- Developing models to integrate the collection, processing, and transportation of material on a landscape level.

3 - Technical Accomplishments/ Progress / Results (cont'd)

Task Area – 1, Feedstock Development

Most important technical accomplishments:

- Gained a greater insight into the methods and costs of sorting and arranging forest residues
- Produced high-quality feedstocks (size distribution, ash content, and bulk density) through comminution and screening for BCTs
- Established bale density target (25-30 lb/ft³) and the baler design upgraded and ready for field testing
- Completed a mathematical model for landscape planning

Key milestones and status:

- Continuing field-based studies sorting, grinding/chipping, screening, and moisture content measurements
- Field trials of the baler planned for May-June 2015 in Arcata, California

3 - Technical Accomplishments / Progress / Results (cont'd)

Task Area – 2, Biofuels and Biobased Product Development

Biochar Machine

- Testing and data analysis completed
- Methods developed for time and motion studies
- Machine improvements currently under development

Torrefier

- Preliminary tests completed
- Machine being instrumented for field testing

Briquetter

- Preparation completed for April 2015 testing
- Mobile briquetter being sent to northern California for field testing

Remote Power Generation

 Biomass gasifier generator system selected as preferred remote power generation technology

3 - Technical Accomplishments / Progress / Results (cont'd)

Task Area – 2, Biofuels and Biobased Product Development

Most important technical accomplishments:

- Detailed biochar machine testing and data analysis completed
- Through these experiments, test protocol and data analysis methods have been developed

Key milestones and status:

- Field tests of all three biomass conversion technologies will be completed during summer 2015
- Performance data summaries will be distributed to the broader project team following data analysis

Briquettes

3 - Technical Accomplishments / Progress / Results (cont'd)

Task Area - 3, Biofuels and Biobased Product Development Analysis

Most important technical accomplishments:

- Financial model constructed with validation underway
- Methodology adapted for input-output analysis of overall economic impacts
- Three field sites established to test ecological sustainability of biochar application
- Website and a logo designed

Key milestones and status:

- Draft costing model of a forest-to-energy system will be completed
- Life cycle and chemical analysis of field site data will begin
- Stakeholder workshop will be conducted

4 - Project Relevance (to BETO MYPP)

This project aims to "develop technologies to provide a reliable, affordable, and sustainable supply of terrestrial feedstocks to enable a nascent and growing bioenergy industry... and ... develop commercially viable technologies to convert feedstocks into bioproducts and biopower."

"Waste to Wisdom" - an integrated approach that will:

- Provide significant advancement in terrestrial feedstock supply and logistics that meet the MYPP target of \$80/dry ton with low ash contents (<1%)
- Show how integrating BCTs into feedstock logistics can increase transportation efficiencies and improve longer-term feedstock storage in depots or biorefineries
- Provide products that reduce physical and chemical variability to ensure more reliable and efficient biofuels as a replacement for coal, compatible with existing infrastructure and reducing overall emissions
- Provide credible data and projections on current and future costs, social benefits, and environmental impacts, which will reduce uncertainty to developing biorefinery technologies

5 - Future	May 2014			Mar 201						
Task Area 1	Technical Area/Milestone/Quarter	1	Yea 2	ar 3	1 4	/ea 2	ar 2 3) 1	/ea 2	3 4
Biomass Collection &	Sorting, arranging, comminution, and screening									
Processing	Feedstock quality control experiments Biomass operations integrated									
Baler	with BCTs Productivity & cost analysis for									
Technology	forest residue types Development of baling system									
Transportation	logistics									
Transportation Analysis &	development & analysis									
Feedstock Scheduling	Landscape scale feedstock scheduling model									
	Model validation & modification									

5 - Future	Ma 20 ⁻	-			Marc 201									
Task Area 2	Technical		Y	/ea	ear 1			Yea	ar 2	2		3		
	Area/Milestone/Quarter		1	2	3	4	1	2	3	4	1	2	3	4
Biochar	Scale up and develop field read	у												
production	unit													
	Operate biochar unit at BSI													
	headquarters in CO													
	Operate biochar unit at field site	;												
Pyrolysis /	Adapt unit for field operation													
Torrefaction	Operate unit at field site in CA													
	Scale up unit													
Briquetting	Assess suitability of briquetting													
	unit for field use													
	Operate briquetter and assess													
	energy requirements													
BCT analysis	Assess waste heat use, test hea	t-												
	to-electric technology													
	Field test of BCTs with various													
	feedstocks													
	Data analysis													

5 - Futu	Ма 20	-		I	Mar 201									
Task Area 3	Technical Area/Milestone/Quarter			(ea		1		Yea				(ea		3
			1	2	3	4	1	2	3	4	1	2	3	4
Economics &	Integrated engineering/costing models	;												
Marketing	Market assessment & strategic													
	marketing plans													
	Economic impacts of biochar carbon													
	sequestration													
Social Impacts	Social, envr. and economic evaluation													
	Avoided cost analysis													
Ecological	Field trial: Biochar application													
sustainability	Chemical analysis of soil samples													
	Seed germination, biochar application													
Life Cycle	LCI/LCA development													
Analysis	Spatial analysis and inventory													
	assessment													
Project	Website development, technology													
Outreach	transfer & marketing													
	Organize webinars, workshops and													
	conferences												J	

Summary

- Overview: Utilization of forest residues for the sustainable production of biofuels, bioenergy, and biobased products
- Approach: Integration of new biomass conversion technologies with in-woods biomass operations
- Technical Accomplishments/Progress/Results: Significant progress made with production of quality feedstocks from forest residues; developed and tested pilot models of biomass conversion technologies and prepared them for a demonstration at a forest operation site; and analysis underway to evaluate economic, social and environmental benefits
- Relevance: Significant advancement in meeting the MYPP goals of sustainable supply of terrestrial feedstock and development of innovative biomass conversion technologies
- Future work: Continue working to meet the project timeline outlined in the Statement of Project Objectives (SOPO)

Questions?

2- Approach (Technical)

Overall Approach:

Integration of new biomass conversion technologies (BCTs) with in-woods biomass operations: a solution to barriers.

Critical Success Factors:

- Built a team of PIs with proven knowledge and experience in each task
- Building scale-up biomass conversion technologies from existing pilot systems that were proven to be functional
- Excellent collaborations with private companies and forest landowners

Potential Challenges:

- Providing results that are relevant over a wide range of factors influencing conversion applications
- Finding markets that will accept the products from the BCTs at prices that will pay for the capital investments and operating costs.

List of Abbreviations

- BCT Biomass Conversion Technology
- BDT Bone Dry Ton
- BETO Bioenergy Technologies Office
- BSI Biochar Solutions Inc.
- CORRIM Consortium for Research on Renewable Industrial Materials
- DOE U.S. Department of Energy
- LCA Life Cycle Analysis
- LCI Life Cycle Inventory
- MYPP Multi-Year Program Plan
- PI Principal Investigator
- SOPO Statement of Project Objectives
- TA Task Area

Additional Slides

Sorting & Moisture Content Study

- Study in progress
- 5 months of moisture samples collected and analyzed
- One full year of data (ending in July) will be collected

Piled arrangement

Teepee arrangement

Criss-cross arrangement

Scattered arrangement

Covered and uncovered

Screening to produce uniform feedstocks

• Objective – To evaluate fuel consumption, productivity, and the effectiveness of separating ground or chipped woody biomass using star and deck screeners.

Biochar Machine Testing Matrix

The biochar machine was tested in August 2014 in Pueblo CO to determine the effect of feedstock species and quality on operational parameters.

Species	Con	ifer	Con	ifer	Con	ifer	Con	Conifer		Conifer		wood	Juniper			
Comminution Method	Gro	und	Gro	und	Gro	und	Ch	nip	Chip		Gro	Ground		Ground		
Contaminant	no	no I	2/3 l 1/3	•	U 7.	soil	no	ne	none		none		none		as received*	
Moisture Content	15%	1 9 %	17%	15%	14%	16%	37%	25%	22%	20%	15%	16%	10%	10%		
Ash Content	2%	2%	7%	2%	14%	14%	0.7%	0.1%	3%	3%	0.3%	1%	26 %	21%		
Particle Size (% mass) (<0.1"/0.1"-1"/>1")	12/80/9		14/77/9		14/77/8		1/99/0		31/69/0		20/7	79/1	28/64/8			

* Contamination was not added, however the juniper feedstock was highly contaminated as received.

Feedstock Throughput and Yield

Feedstock input and biochar output rates on a dry, ash-free basis (DAF).

Pathways to biomass conversion

