DOE Bioenergy Technologies Office 2015 Project Peer Review

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Electrochemical Methods of Upgrading Pyrolysis Oils Tedd Lister (INL), Mike Lilga (PNNL), and YuPo Lin (ANL) March 24, 2015

Goal Statement

- Problem: Bio-oil processing through thermal hydrodeoxygenation is an expensive, multi-stage process requiring significant H₂ at high pressure
- Goal: Achieve an electrochemical process to economically hydrotreat pyrolysis oils under mild conditions to a more stable form that can be transported and further upgraded catalytically
- A new innovative process is being developed that could change the way we think about fast pyrolysis bio oil upgrading and provide new processing options not currently possible that will:
 - Increase efficiency (carbon, thermal, etc.)
 - Reduce H₂ demand (EChem hydrogenation, removal of short acids)
 - Reduce GHG
 - Enable access to stranded resources (distributed processing)
 - Contribute to attaining the \$3/GGE cost target
- US benefits from:
 - Reduced dependence on foreign oil
 - Sustainable domestic transportation fuel supply
 - Jobs and economic development

Overview

Thermochemical Conversion SEED

Timeline

- Start: 11/19/2013
- End: 09/30/2017
- Percent complete: 30%

Budget

0				
	Total Costs FY 10 –FY 12	FY 13 Costs	FY 14 Costs	Total Planned Funding (FY 15- Project End Date
DOE Funded (PNNL)	0	0	\$310K	\$1,280K
DOE Funded (INL)	0	0	\$285K	\$855K
DOE Funded (ANL)	0	0	\$120K	\$400K

Barriers Addressed

Tt-H Bio-oil intermediate stabilization Tt-J Catalytic upgrading of bio-oil intermediates to fuels and chemicals Tt-O Separations efficiency Other barriers Tt-M Hydrogen production Tt-P Materials compatibility Tt-N Aqueous phase utilization and wastewater treatment Partners

PNNL	Michael Lilga	50%
INL	Tedd Lister	35%
ANL	YuPo Lin	15%

University of Arkansas, Fayetteville, AR Giner Inc., Boston, MA

1 - Project Overview

EC hydrogenation background

- Electrochemical hydrogenation/reduction has a long history and is employed for commercial synthesis
- Hydrogenation of vegetable oils and sugars is established technology
- Recent growth in literature activity demonstrates potential for an electrochemical process (surrogate and separated bio-oil – see additional slides for recent papers)
- No previous EC processing of raw pyrolysis oil
- Project initiated with limited knowledge base to benchmark process (thus a SEED project)

Electrochemistry plays a big role in industrial commodity chemical production

Cl₂ was #6 on the US Top Chemicals Produced list in 2004 at 12.2 M metric tons

http://pubs.acs.org/cen/coverstory/83/pdf/8328production.pdf

1 – Project Overview

Vision of bio-oil processing using electrochemical stabilization

- Pyrolyzing biomass at distributed sites enables greater accessibility to stranded feedstocks and eliminates the need to transport water (e.g., densifies the intermediate)
- Electrochemical stabilization eliminates the need to have a hydrogen source at a distributed facility

2 - Approach (Technical)

2 - Approach (Management)

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

IENERG

Critical Success Factors

- 1) Final process will need to demonstrate:
 - A favorable impact on cost of processing
 - Scalability at the level needed for fuels production

Challenges

- 1) Demonstrate bio oil electrochemical hydrogenation (INL)
- 2) Develop electrode materials with high current efficiency (PNNL)
- 3) Develop anion exchange membranes resistant to bio oil (ANL)

Mitigation Strategy

- 1) Utilize the expertise of 3 National Labs to address the immediate challenges
- 2) Stage the development starting with a simpler cell, then adding complexity
- 3) Develop more complex elements separately in parallel, then integrate
- 4) Use Go/No-Gos and TEAs to adjust technology development as needed

Upcoming Decision Gates

03/31/2015: Demonstrate electrochemical hydrogenation

04/30/2015: Demonstrate enhanced acid separation efficiency on anti-fouling AEM

05/31/2015: Analytical validation of hydrogenation

2 – Approach (Management)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- INL leads the overall effort
 - Subtasks are fully integrated across the 3 labs
- Team meets regularly
 - Inputs and feedback influence experiments and process development
- Quarterly reporting at each lab
- Deep dives with BETO
 - BETO has an active role in project direction

ENERGY Energy Efficiency & Renewable Energy

ENERGY Energy Efficiency & Renewable Energy

¹³C NMR Analysis of Electrochemically Hydrogenated Bio-Oil

 ¹³C NMR suggests electrochemical hydrogenation of phenolics to aliphatic ethers and reduction of carbonyl functionalities

ENERGY Energy Efficiency & Renewable Energy

Elemental, TAN, and UV/Vis Analyses of ECH Bio-Oil

• Analyses are consistent with phenolic aromatic ring reduction

12 | Bioenergy Technologies Office

-0.2

-0.4

Hydrogen Overpotential [V]

Pd

Ru

0.0

-0.2

0.0

3 – Technical Accomplishments **/Progress/Results (cont'd)**

Evaluation of New Electrodes Using Theory and Experiments

- To favor ECH over H₂ production, electrodes with higher H₂ and lower organic overpotentials are required
 - Theory Cu, Au, C are favorable candidates

Target

Region

-0.6

- Experimental Cu, C, and Ag could be used as new electrodes
- Experimental C had the lowest H₂ production and highest benzaldehyde conversion in agreement with theory
- Theory and experiment guide new electrode development
- Aromatic aldehydes demonstrate a higher selectivity for ECH

Theoretical Prediction

Experimental Verification

3zCHO Conversion

Benzaldehyde Conversion

Ag

H₂- Yield

Cu

Pd-Ni 🌒

vs. H, Yield

С

eere.energy.gov

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

Molecular Dynamics Simulation of the Electrode Surface

- MD describes the environment near the electrode
- Applied potential tends to move organics away from the metal particle
- Analysis will be extended to distribution from the <u>carbon surface</u> (could be different)
- Distribution of phenolics will be determined

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Separation-Electrolysis Cell

- Route to TAN reduction
- Electrodialysis cell using alternating AEM-CEM
 membranes separates organic acids and water
- Will be integrated with hydrogenation system to remove short-chain acids and ash components from pyrolysis-oil

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

CFM

Reversibility of AEM Fouling

Ionic Resistance (ohm	$-cm^2$) of AEM	in 0.5 N NaCl	solution			
Soaking Liquid	AHA	ACS	AFN	AXE	AMX	CMX
Bio-oil*	17.9	7.0	1.4	1.4	4.2	5.5
Aqueous	7.19	6.1	1.2	1.2	3.8	5.4
Resistance Increase	149%	15%	14%	15%	11%	2%
~						
Soaking Liquid	AMD	AMV	AMT	AXE-M	AMX-M	Syn. AEM
Soaking Liquid Bio-oil*	AMD 45.2	AMV 3.0	AMT 7.5	AXE-M 3.0	AMX-M 3.3	Syn. AEM 5.8
<u> </u>						/ • · · · · · · · · · · · · · · · · · ·
Bio-oil*	45.2	3.0	7.5	3.0	3.3	5.8

- Cation membrane is not fouled in bio-oil.
- Synthetic AEMs resist organic fouling compared to commercial AEMs, However, its surface coating was not stable. Further improvement is needed.
- Surface modified AMX-M seems have better conductivity after treatment.

ENERGY Energy Efficiency & Renewable Energy

Fouling and Ion-Transport Property of Surface-Treated AEMs Electrochemical Fouling Monitoring

- Resistance of ion transport increased in mixed organics surface fouling?
- Modified surface **decreased** the ion transport resistance reduce fouling?

Energy Efficiency & Renewable Energy

Preliminary Technoeconomic Analysis

- A high-level TEA was conducted
- As a first pass, the current State Of Technology for thermochemical pyrolysis oil upgrading was used as a basis of comparison
- New experimental results will modify assumptions used in this analysis

Energy Efficiency & Renewable Energy

EChem and Thermal Costs Compared

- EChem and thermal costs are comparable
- Feedstock the major cost
- Thermal catalyst cost relatively high; utility cost relatively low
- EChem catalyst cost relatively low; utility cost relatively high
- Analyses will be updated with new information this FY

4 - Relevance

- Electrochemistry provides a method to hydrogenate bio-oils using mild thermal conditions. This provides a method to both stabilize and upgrade pyrolysis oils
 Barriers Tt-H and Tt-I
 - Barriers Tt-H and Tt-J
- Mild electrochemical hydrogenation should stabilize oil to minimize char formation and increase carbon utilization
 - Thermochem R&D priority
- By separating chemicals (small organic acids) that are hydrogen sinks during hydrotreating, hydrogen efficiency is increased
 - Thermochem R&D priority
- The 2-membrane cell process is expected to decrease acidity and remove organic acids resulting in a less corrosive mixture
 - Barrier Tt-P
- Electrochemistry is a scalable method and requires primarily electricity to operate.
 - This enables "Depot Concept" for energy densification of stranded feedstocks (Advanced Feedstocks Logistics Systems)
- While this work is ground breaking, electrochemistry is widely used in chemicals production: chlor-alkali, pesticides, hydrogen, etc.

5 – Future Work

- 1) Address FY15 Decision points: assess technology and make adjustments
- 2) Develop and refine process as described in activities below

FY2015	FY2016	FY2017
		Demonstrate upgrading of other feedstocks
Development of separation cell to enable removal of acids and dewatering	Demonstration of integrated system for upgrading pyrolysis oil	Determine design features of a scaled system
membranes to perform	Develop membrane coating and fouling mitigation protocol to extend membrane lifetime	Investigate co-product usage
o o ,	TEA tracking Identify technology gaps and opportunities	TEA assessment of technology
understanding of hydrogenation	Deepen understanding of hydrogenation and predict desirable electrode compositions	Test improved electrode materials with bio oils

Summary

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Electrochemical processing has great potential for upgrading pyrolysis oil and enabling use of stranded feedstocks
- Project has demonstrated unique phenolic hydrogenation, providing new avenues to bio oil stabilization not attainable by SOT
- Initial assessments have shown processing costs are not significant and could reduce total costs.
- Modeling activities will continue to provide information to guide process decisions
- Work will continue as a team to develop each process "function" in the near term and merge them at a later stage

- Project has developed separation process that will be applied to pyrolysis oils in the near future
- Membrane stability and fouling in biooil can be mitigated with membrane composition and use of coatings
- Provisional patent filed 03/23/2015

Additional Slides

Abbreviations

- AEM anion exchange membrane
- ANL Argonne National Laboratory
- CAN carboxylic acid contribution to acid number
- CEM cation exchange membrane
- EChem electrochemistry (process)
- ECH electrochemical hydrogenation
- INL Idaho National Laboratory
- NMR nuclear magnetic resonance (spectroscopy)
- PhAN phenolic contribution to acid number
- PNNL Pacific Northwest National Laboratory
- TAN total acid number
- TEA techno-economic analysis
- UV/Vis ultraviolet visible (spectroscopy)

Electrolyzers

ENERGY Energy Efficiency & Renewable Energy

Stack: series of electrolyzers assembled in parallel

Pressurized electrolyzer stack Giner Electrochemical Systems

Commercial H₂ electrolyzer system

Papers Relevant to Electrochemical Bio-Oil Hydrogenation (since 2010)

ENERGY Energy Efficiency & Renewable Energy

Li et al., Green Chemistry 16 (2014) 844, A Mild Approach for *Bio-oil* Stabilization and Upgrading: Electrocatalytic Hydrogenation using Ruthenium Supported on Activated Carbon Cloth.

Green et al, Green Chemistry DOI: 10.1039/C3GC00090G (2013), The Electrocatalytic Hydrogenation of Furanic Compounds in a Continuous Electrocatalytic Membrane Reactor. (*furfural*)

Saez et al, Electrochmica Acta 91 (2013) 69, *Electrocatalytic Hydrogenation of Acetophenone Using a Polymer Electrolyte Membrane Electrochemical Reactor.*

Xin et al., Chemsuschem 6 (2013) 674, *Electricity Storage in Biofuels: Selective Electrocatalytic Reduction of Levulinic Acid to Valeric Acid or g-Valerolactone.*

Kwon et al., Chemsuschem 6 (2013) 455, *Electrocatalytic Hydrogenation and Deoxygenation of Glucose on Solid* Metal Electrodes.

Li et al, Electrochimica Acta 64 (2012) 87, Aqueous Electrocatalytic Hydrogenation of Furfural Using a Sacrificial Anode

Green et al, Chemsuschem 5 (2012) 2410, Electrocatalytic Reduction of Acetone in a Proton-Exchange-Membrane Reactor: A Model Reaction for the Electrocatalytic Reduction of Biomass.

Li et al, Green Chemistry 14 (2012) 2540, Mild Electrocatalytic Hydrogenation and Hydrodeoxygenation of Bio-oil Derived Phenolic Compounds using Ruthenium Supported on Activated Carbon Cloth. (guaiacol and similar)

Vilar et al, Applied Catalyst A 372 (2010) 1, Investigation of the Hydrogenation Reactivity of Some Organic Substrates Using an Electrocatalytic Method. (aromatic aldehydes and ketones)

Characterization and Improvement of Fouling Resistance in Bio-oil

Considerations of AEM used in Bio-oil

- 1. Robust structure stable in bio-oil
- 2. Mitigatable Organics fouling (Conductivity measurement)
- 3. Fouling and Ionic transport property in bio-oil (In-situ electrochemical fouling monitoring Technique)
- Compatibility of the process and extraction streams (e.g. Water back diffusion)

Improve Anti-fouling Resistance in Bio-oil

- 1. Passivation surface of commercial AEM
 - Poly electrolytes passivation charge
 + hydrophobicity
- 2. Fabricate synthetic AEM
 - Asymmetric
 - Hydrophobic molecules with charged moieties

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

ENERG