

WBS 1.2.3.3 Biomass - Feedstock User Facility

March 25, 2015

Feedstock Supply and Logistics

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Kevin L. Kenney

Idaho National Laboratory

Goal Statement

- The goal of this project is to engage industry collaborators in the scale-up and integration of biomass preprocessing systems and technologies that
 - Advance the achievement of BETO goals and mission AND
 - Advance the development and commercialization of biomass preprocessing systems that address the needs of the biofuels' and bioproducts' industries

Quad Chart Overview

Timeline

- Project start date: FY 2009
- Project end date: FY 2017

Barriers

- Ft-E, Engineering Systems
- Ft-J, Biomass Material Properties
- Ft-K, Biomass Physical State Alteration

Budget

	Total Costs FY 2010 to FY 2012	FY 2013 Costs	FY 2014 Costs	Total Planned Funding (FY 2015 Project End Date)
DOE Funded	\$9.1M	\$2.5M	\$2.0M	\$6.0M
Project Cost Share (Comp.)*		\$85k	\$850k	\$3.0M

Partners

- Forest Concepts
- Vortex Processing
- UOP
- Ensyn
- DuPont
- Cool Planet
- TerraPower
- InnerPoint Energy
- Vermeer

1 - Project Overview

- FY 2009 to 2011: Design, Engineering, and Fabrication of Biomass Feedstock Process Demonstration Unit (PDU)
- FY 2012: Support of BETO FY 2012 Cellulosic Ethanol Demonstrations
 - Preprocessing demonstration
 - Feedstock supply for conversion demonstrations
- FY 2013:
 - Moved PDU from parking lot to 27,000-ft² high bay in the INL Energy Systems Laboratory
 - National User Facility designation in July 2013
 - Executed first User Facility Project with Forest Concepts and Vortex Processing
- User Facility funding designated to cost share collaborative projects
- FY 2014: Conducted four User Facility projects
 - 2 feedstock supply
 - 1 feedstock characterization
 - 1 scale-up and integration
- FY 2015: On track to double FY 2014 project count

Biomass Feedstock Process Demonstration Unit (PDU)

2 – Approach (Technical)

Feedstock Preprocessing

Feedstock development herbaceous and woody resources, on-spec for all conversion platforms

Process development size reduction, separation/fractionation, thermal treatment, chemical treatment, densification

System-level feedstock solutions identify preprocessing "bottle necks" and improvement opportunities BIOMASS FEEDSTOCK NATIONAL USER FACILITY

- Biomass Preprocessing Scale-Up and Integration
 - Feedstock supply
 - Feedstock development (develop specs and preprocessing designs)
 - Technology RD&D
- Biomass Characterization
 - Resource characterization
 - Feedstock (product) characterization

Biomass Analytical Library

Biomass Characterization understanding physical and chemical variability

Performance Evaluation informing preprocessing operations to achieve refinery specs

Feedstock Logistics designing cost-effective, environmentally-sustainable supply systems

2 – Approach (Management)

Project Scope

- Every project requires an external collaborator (industry, univ, federal)
- Strive to parse out non-proprietary results from every project, including proprietary projects
- Mix of directed/open projects
- Proprietary projects pay 100%
- Non-prop. projects require ~50% cost share
- UF funds "facility readiness" for all

Management Tools

- DOE review/approval
- New User Facility business tools
- Customer relationship management, project develop process using SalesForce
- Annual market assessments
- Marketing/Trade-shows

- Success Factors
 - # projects
 - # users
 - # students
- Challenges
 - Maintaining project pipeline
 - Working at the pace of industry
 - Hitting feedstock specs

- # publicationsCustomer
 - feedback

3 – Technical Accomplishments

Since last peer review: transitioned from a project to a National User Facility

	BASELINE (FY 2013 Peer Review)	EXPANSION
Business Tools	CRADA, WFO	Non-proprietary user agreement
Users	DOE Projects	Industry
Markets	Biofuels	Biopower, waste-to-energy
Project Size	Small, 30 tons largest	Larger, 200 tons largest
PDU Utilization	~20%	Currently 80-90%

3 – Technical Results: Comminution Project

- Objective: Compare three comminution technologies for <u>secondary size reduction</u>
- Feedstocks: Corn stover, switchgrass, ponderosa pine each at three moisture levels
- Funding:
 - User Facility funds for testing, characterization, and reporting
 - Collaborator cost share (equipment readiness, travel, labor at INL)
- Collaborators: Forest Concepts, Vortex Processing

	Hammer Mill	Rotary Shear	Collision Mill
Capacity (tph)	5	1	1
Motor Size (hp)	150	20	30
Comminution Mechanism	Swinging hammers, 1-in. screen	24-in. wide row of interlocking 3/16-in. disks	Particle-particle collisions in air stream vortices

3 – Technical Results: Comminution Project

Infeed:

- Corn stover
- Bales processed through hammer mill with 6" screen

- Hammer Mill
 - Modest increase in "fines" compared to infeed material
 - Effective at grinding particles greater than 1.5 mm in size
- Rotary Shear
 - Did not create "fines"
 - Effective at grinding particles greater than 3 mm in size
- Collision Mill
 - Created the finest and "roundest" particles

3 – Technical Results: Comminution Project

Specific Energy Consumption

- Hammer mill and rotary shear
 - Comparable for switchgrass and low-moisture corn stover
 - Both required more energy with high-moisture materials
 - Rotary shear performed better with high-moisture corn stover
 - Hammer mill performed better with pine
- Collision mill
 - Energy requirements relatively high compared to the hammer mill and rotary shear
 - Energy use insensitive to moisture with switchgrass and pine; increased with corn stover moisture
 - Air currents inside the machine provide some drying capacity
- Corn stover is very "tough" when wet; 2 to 4.5 times more energy wet vs dry

<u>Outcomes</u>

- Collaborators: Independent 3rd-party data to improve, market, and commercialize their equipment
- INL & BETO:

11 | Bioer

- Collection of data to inform State-of-Technology reports and TEAs
- Identify further technology development needs

3 – Technical Results

The Least Understood Spec: Particle Size Distribution

How defined?

- Grinder screen size (19 mm)
- Sieve classification
 (2.1 mm mean)
- Optical measurement (2 < ps < 19 mm)
- "Overs" cause feeding and handling problems (e.g., bridging)
- "Fines" can cause conversion problems (premature combustion/pyrolysis)
- Particle size distribution (shape of curve above) affected by feedstock type, moisture, and screen size
- Processing parameters are selected to provide a balance between overs and fines

3 – Technical Results: Feedstock Supply

- Objective: Supply 40 tons of feedstock for a pyrolysis process validation
- Feedstock
 - Lodgepole pine (clean, debarked), corn stover (multipass), switchgrass
 - Specs included moisture, particle size max (overs) and min (fines), ash
- Funding:
 - User Facility funds for process development
 - DOE IBR funds for processing

<u>Outcomes</u>

- Collaborators: Supported process validation with industrial feedstocks
 - Feedstock: sourced, processed, packaged, and shipped (~300 supersacks)
 - Feedstock characterization: moisture, particle size distribution, ash, and proximate/ultimate
- INL & BETO: Feedstock data (preprocessing, characterization) to support BETO pyrolysis pathway TEAs

3 – Technical Results: PDU Process Development

Challenge: Combined drying and grinding makes it difficult to achieve feedstock particle size specs.

- Fines end up as char
- Overs ("pin-chips") cause handling & feeding problems

¹⁴|Bioener *Fines and overs not indicative of customer spec

3 – Technical Results: Co-Product Scale-Up and Integration

The Most Underrated Spec: Handling and Feeding

- Plants that process bulk solids operate at less than 50% of design capacity the first year of operation; this is often due to handling problems (from Rand Corp study)
- Handling problems arise from feedstock variability

Challenge:

- Scaling up a new process design, new equipment
- More integrated unit operations increases complexity
- Process designed without full understanding (data) of material variability

3 – Technical Results: Co-Product Scale-Up and Integration

- Objective: Scale-up and demonstration of co-product production
- Funding:
 - User Facility Funds for process development and PUD repair & maintenance
 - Partner funded WFO for processing, characterization, and shipping
- Industry partner:
 - Previously completed process R&D
 - Engaged User Facility for drying capability and reconfigurable design to accommodate a unique process flow and additional third-party equipment
- 200 tons of product, ~ 350 hours PDU operation: 3 months, up to 12 hours/day, 6 days/week

<u>Outcomes</u>

- Collaborators: Supported process validation with industrial feedstocks
 - Supplied 200 tons of product for combustion trial
 - Processing data and information to inform commercial design
 - Accelerated commercialization
- INL & BETO:

16

- Machinery data and experience to quantify variability affects on preprocessing
- Drying data to support Algae blending TEA

4 – Relevance

- User Facility projects highlight the importance of collaboration to not just provide a service, but solutions to feedstock challenges
- Collaborations are helping INL and BETO
 - Understand range of feedstock specifications
 - Understand what is driving these specifications
 - Understand the gap between specifications and what is achievable at an industrial scale
 - Identify innovative solutions to industrial preprocessing needs (closing the gap)
- Collaborations are helping our partners (<u>users</u>)
 - Understand the gap between specifications and what is achievable at an industrial scale
 - Understand what industrial feedstocks look like and perform like
 - Develop specifications that balance cost, performance, and reality
- User Facility projects are helping BETO
 - Supplying data to support BETO techno-economic assessments and state of technology reports
 - Provides input of industry feedstock needs

5 – Future Work

- Preprocessing Municipal Solid Waste
 - Evaluate feasibility of woody/herbaceous preprocessing designs to accept MSW as a slip stream
 - Collect data to support BETO techno-economic assessments of MSW as a blendstock
 - Compare densification options (pellet, cube, and briquette) based on energy input, feedstock quality (density and durability), and conversion performance
 - Supply feedstocks to collaborators for testing
 - Involves 2 waste-to-energy collaborators: InnerPoint Energy, Cogent Energy Systems
- Biopower Feedstock Specs
 - Develop feedstock densification specifications for handling, feeding, and combustion
 - Collect data to support BETO feedstock techno-economic assessments
 - Supply feedstocks for test burn(s)
 - Involves three collaborators: Repreve Renewables, Univ. of Iowa, and PHG Energy

5 – Future Work

- Control system development of integrated preprocessing system
 - Integrate grinding, drying, and pelleting process models
 - Dynamically control system to control processing variables to optimize energy consumption, throughput, and/or product quality
- Expand user facility capabilities
 - Mobile torrefaction system, 2 to 3-ton/hour throughput
 - Cubing system module for PDU, 3 to 5-ton/hour throughput
 - Improve modularity to simplify adding third-party equipment modules to PDU
- Go/No-Go Milestone to evaluate current project selection and review process for impact to BETO programmatic goals and objectives
- Business tools working internally to
 - Reduce project development time
 - Streamline contracting reviews and approvals
 - Automate the PDU project report

Summary

- Approach
 - Active industry engagement and project development to ensure relevance to BOTH industry and DOE-BETO
 - Data collection to understand industry needs and the life cycle of the project's offering/capabilities
- Technical Accomplishments
 - Interaction with conversion technology developers is useful in identifying the range of feedstock specifications for different processes
 - Knowledge base of process design for feedstock preprocessing and equipment performance capabilities and needs will accelerate scale-up and integration of biomass preprocessing
- User facility provides a unique and critical capability for projects
 - Requiring an integrated system
 - That are too large
 - That are too complex for industry test laboratories

