

DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

2015 "BALES" Project Review

February 23, 2015 Technology Area Review

Kevin Comer, Sr. Project Manager Antares Group, Inc.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

BALES Biomass Alliance for Logistics Efficiency and Specifications

Project Summary

- 3 Year Development and Demonstration Project, Began Sept 2013
- Develop and demonstrate new and improved harvest and processing technologies that will reduce biomass supply chain costs while meeting quality specifications of biomass end users

Goal Statement

- To develop and demonstrate new and improved harvest and processing technologies that will lower biomass supply chain costs to \$53/DT (harvest and transport to "throat of conversion reactor") while improving feedstock quality, validate improvements and remaining gaps, and address key sustainability issues in order to promote a sustainable and scalable advanced biofuels industry.
- Cost reductions for advanced large scale feedstock delivery and processing estimated to be ~\$18 per ton (conservative)
 - Worth \$5.4 million/yr at 300,000 ton/yr scale
- Identify and measure all supply chain costs.
- Improve feedstock quality measurement through NIR spectroscopy, relative to the end-**users' specifications.**
- Successful demonstration of these technologies in a commercial environment will support the increased production of cellulosic ethanol in the United States.

All project objectives support key DOE BETO objectives.

Timeline

- Project start date: 9/30/2013
- Project end date: 9/30/2016
- Percent complete: 45%

Quad Chart Overview

Barriers

- Ft-L. Biomass Material Handling and Transportation
- Ft-M. Overall Integration and Scale-Up
- Ft-D. Sustainable Harvesting

Budget

	Total Costs FY 10 –FY 12	FY 13 Costs	FY 14 Costs	Total Planned Funding (FY 15-Project End Date				
DOE Funded	\$0.00	\$0.00	\$1,282,948	\$4,117,052				
Pro	Project Cost Share by Contributing Partner							
Vermeer	\$0.00	\$0.00	\$993,977	\$5,396,574				
Kelderman Mfg.	\$0.00	\$0.00	\$109,144	\$700,713				
Other	\$0.00	\$0.00	\$153,197	\$746,803				
Poet Biomass	\$0.00	\$0.00	53,989	\$646,011				

Partners

- FDC Enterprises
- o Vermeer
- Kelderman Manufacturing
- Antares Group Inc.
- B Hames Consulting
- Analytical Spectral Devices Inc.
 - INL

0

- Poet Biomass
- Virginia Tech
- o AgSolver
- Others (harvest collaborators),

1 - Project Overview

• Project Background and Team History

Project Overview (Team History)

Biomass **A**lliance for **L**ogistics Efficiency and Specifications

BALES

kelderman

ABENGOA BIOENERGY Science. Solutions. Service.

MacDon The harvesting specialists.

Project #1: Design and Demonstration of a Comprehensive Biomass Feedstock Supply System FDC Enterprises Grasslands ANTARES Group Incorporated

Vermeer[®]

Services

Greenhouse Gas Services a GE AES venture

T.R. Miles Consulting Engineering Consulting

Project Overview

Seeking to replace this...

(Team History)

Biomass Alliance for Logistics Efficiency and Specifications

Project Overview

(Team History)

Bale Yard Storage

Removes one pass through the field

Load Directly

Onto Process Line

Roadsiding Bale Picking Truck Reduces # trips in the field by 67%

Project Overview

(Team History)

Poet-DSM's Project Liberty – Emmetsburg, IA

2 – Approach (Technical)

- Develop and Demonstrate New or Improved Biomass Harvesting and Processing Equipment
 - Designed equipment to fill gaps in the biomass supply chain (harvest and processing), for square and round bale systems
 - Continuous development cycle (Design \rightarrow Build \rightarrow Test \rightarrow Improve)
 - Improved in-field harvest data collection systems to build a more robust set of cost and performance data
- Develop Rapid and Reliable Quality Assessment Tools
 - Collect biomass quality data (moisture, ash, carbohydrates) rapidly through in-field Near Infrared Spectroscopy and rapid analysis tools
- Critical Success Factors and Key Challenges
 - All prototype equipment and innovations fabricated and tested
 - Demonstrate feedstock cost reduction at the end users' specifications
 - Cultural changes and investment required to implement a new "system"

BALES Biomass Alliance for Logistics Efficiency and Specifications

Process Line Concept Drawing

Kelderman "Projects"

- Self-Propelled Baler
 - -Wind Row Merger
 - -6-Pack Stacker
- Pre-Loader
- Biomass Handling Trailer
- Bale-Picking Truck
- De-Stacker

Kelderman SPB, Windrow Merger, 6-packer

Kelderman Pre-Loader

Bale-Picking Truck, Biomass Trailer, De-Stacker

Vermeer "Projects"

- Forage segment
 - Round bale harvest cost analysis
 - High capacity bale mover
 - Road transportation
 - Bale density
 - Reduce ash content in bale harvest
 - Reduce baler downtime
- Environmental segment
 - BG480 shredder
 - Bale shear
 - Automated de-baler system
 - Grinding/shredding improvements
 - Biomass shredder

BALES Biomass Alliance for Logistics Efficiency and Specifications

2 – Management Approach

- Assembled a proven multi-disciplinary team, with complimentary capabilities to perform all required functions from initial conceptual design to delivery and processing of feedstocks at the end-user's facility.
- Planned equipment development and testing schedule for 3 yr period.

3 – Technical Accomplishments/ Progress/Results

- Harvest/Logistics Equipment Development & Demonstration
 - Round Bale Harvest System Improvements
 - Advanced in-field Round Bale Removal May not market
 - Advanced Round Bale Transportation May not market
 - Reduced Ash Content
 - Increased Round Bale Density
 - Reduce baler downtime through design improvements
 - Harvest data (cost and performance) collection conducted and summarized for round and square bale operations
 - 76,441 bales harvested (43,192 dry tons)
 - ~51,000 acres
 - 4,278 engine hours
 - 23 pieces of harvesting equipment

3 – Technical Accomplishments/ Progress/Results (cont'd)

Harvest

3 – Technical Accomplishments/ Progress/Results (cont'd)

3 – Technical Accomplishments/ Progress/Results (cont'd)

2014 Iowa Corn Stover Harvest Summary

• Followed "EZ Bale" Harvest Protocol – Square & Round Bales

- -37,000 Acres
- -53,492 Bales Harvested (31,175 dry tons @ 1,384 lbs/bale, avg.)
 - Round Bale Ave: 1,318 lb/bale; Square Bale Ave: 1,393 lb./bale
- Ave. Moisture Content: 15%; Ave. Ash Content: 8.7%
- -Biomass Yield: 0.85 dry tons/acre

Windrowing by combine only, no raking or shredding allowed.

BALES Biomass Alliance for Logistics Efficiency and Specifications

Baling Operations: Average Production Costs 2014 Iowa Corn Stover Harvest Results

Bale Moving Operations: Average Production Costs 2014 Iowa Corn Stover Harvest Results

BALES Biomass Alliance for Logistics Efficiency and Specifications

Summary of Harvested Cost - \$/Dry Ton Basis Conventional Baling & Roadsiding Results from 2014 IA Corn Stover Harvest

BALES Biomass Alliance for Logistics Efficiency and Specifications

Comparison of Average Round Baling Costs 2014 Iowa Corn Stover Harvest Results

BALESBiomass Alliance for Logistics Efficiency and Specifications

Crew A

Comparison of Average Large Square Baling Costs 2014 Iowa Corn Stover Harvest

Labor Equipment Fuel Supplies Overhead \$30 \$26.25 \$25 Average Baling Cost (\$/Dry Ton) 2014 IA Custom Rates \$8.67 \$19.22 \$20 \$18.72 \$1.04 \$4.89 \$6.23 \$15 \$3.90 \$1.00 \$0.99 \$10 \$2.80 \$6.45 \$8.46 \$6.06 \$5 \$5.29 \$4.17 \$2.63 \$1.59 \$-

Crew B

Crew C

BALES Biomass Alliance for Logistics Efficiency and Specifications

Comparison of Average Large Square Bale Harvesting Costs 2014 Iowa Corn Stover Harvest (Baling + Bale Moving)

BALES Biomass Alliance for Logistics Efficiency and Specifications

Baling Operations: Bale Production and Fuel Consumption 2014 Iowa Corn Stover Harvest

BALESBiomass Alliance for Logistics Efficiency and Specifications

Roadsiding Operation: Bale Moving and Fuel Consumption 2014 Iowa Corn Stover Harvest

Avg. Bale/Hr Avg. BDT/Hr ---Avg. Fuel Consumption (gal/hr)

2015 Harvest Plans - Vermeer

- Explore variables in ash content. Some preliminary tests in 2014 would reduce the impact of baler pickup height settings as top reason for high ash content.
- Bale density reduce bale quantity, storage impact, machine maintenance impact, moisture content impact.
- Operator experience limited research in 2014 lead us to believe experienced operators can substantially reduce harvest cost (bales/hour, baler uptime, reduced maintenance). Once identified, how can we assist new operators to reduce the learning curve?

Automated De-baler / Net Wrap Removal System

- Tested various methods for cutting the net wrap
 - Considered parameters such as: Dust generation, wear life, energy consumption and reliability.
 - Plan to integrate the net wrap cutting function with the bale deconstruction device.
- Investigated methods for removing net wrap once it has been cut
 - More than 30 tests have been conducted
 - Want to capture the net wrap without retaining excess feedstock
- Brainstormed more than 20 different methods for de-constructing a round bale
 - Focused on using the simplest/most reliable mechanism
 - Built several prototype components:

Net Removal Device

Shearing Mechanism

Overall System

Bale Probe Design and Calibration

NIR/PLS Model	Moist 4	Glu 2	Ash 3	
Cal. Range (%)	4 - 80	5 - 40	0.5 - 19	
RMSECV (%)	2.4	1.5	1.3	
Factors	2	3	5	
R ²	0.989	0.969	0.850	
Ν	33	68	162	
Moist. Range (%)		4-80	4-80	

- ASDI, INL and BHC have designed and calibrated a NIR Bale Probe accessory for the ASDI Field Spec.
- Prototype methods have been developed for the measurement of moisture, ash and glucan in corn stover.
- Recent method updates allow for analysis of samples with high moisture levels
- Glucan 4-60 %M and Ash 4-70 %M

BALES Biomass Alliance for Logistics Efficiency and Specifications

NIR Shakedown Tests Location 1

- Over 2100 spectra collected and analyzed
- 2 4 core samples collected per bale
- Scans at 1" increments from surface to center in hole
- Scans at 4 directions (Up,Right,Down,Left)
- QC sample scanned at set intervals
- Much higher variability seen in aged bales
 - May require more extensive sampling for accurate assessment

NIR Standard and control chart

BALES Biomass Alliance for Logistics Efficiency and Specifications

Streamlined Method Location 2

Updated Sampling Protocol:

- Scan at only 2 directions
- Calculate and report dry weight (DW) for glucan and ash
- Avg. Glu. DW: New 40.3%, stored 40.0%
- Avg. Ash DW: New 6.8%, Stored 7.6%
- 30 reading per core
- Sampling time 5-10 min. per hole

Future Plans:

- Expand and improve calibration
- Storage study with DAM project

4 – Relevance

- The project's objectives align with the BETO's goals to provide biomass feedstocks at or below \$80/DT.
 - The biomass harvesting and processing equipment being developed and demonstrated under this project has demonstrated potential to help reach this goal.
- Developing rapid analysis tools and methods to enable more-efficient and lower-cost feedstock quality assessment throughout the supply chain.
 - This aligns with BETO's goals for "Terrestrial Feedstocks" (found in Biomass Program Multi-Year Program Plan)

BALESBiomass Alliance for Logistics Efficiency and Specifications **5 – Future Work**

- Continued development and refinement of the NIR spectroscopy tools for rapid biomass analysis
- Development and Testing of new harvest and processing innovations
- Ongoing harvest demonstration and data collection activities
- Plan for 2015 fall agricultural residue harvests
- Process testing to meet biorefinery specs. (Summer, 2016)
- Continued team collaboration on sustainability issues.
- Upcoming key milestones:
 - Dual Drive Destringers and Automatic Destringer for Large Square Bales: Equipment Fabricated, Installed and Ready for Testing
 - 24-Bale Prototype Rack System for Round Bale Processing: Equipment Fabricated, Installed and Ready for Testing
 - Automated Round Bale Debaler/Net Wrap Removal System: Equipment Installed and Ready for Testing 39

1. Approach:

 Broad approach for developing system and operation innovations for round and square bale based systems.

2. Accomplishments

- Initial prototypes developed for round and square bale systems
- Demonstrated initial capability of NIR probe for rapid biomass quality analysis, improvements ongoing
- Significant equipment performance and biomass quality data collection

3. Relevance:

 Significant cost reductions and reliability improvements are needed in feedstock delivery and processing systems—primary focus of this project.

4. Success Factors and Challenges:

- Getting all prototype equipment and innovations fabricated and tested
- Demonstrate feedstock cost reduction at the end users' specifications
- Cultural changes and investment required to implement a new "system"

5. Future Work:

- Process equipment fabrication & demonstration
- Ongoing harvest demonstration and data collection activities, including innovations
- Kelderman Pre-loader and Destacker
- Continued development and demonstration of NIR bale probe
- Continued collaboration and progress on sustainability issues

Summary

Additional Slides

BALES Biomass Alliance for Logistics Efficiency and Specifications

Cost Modeling Assumptions

Labor Rates								
Job Title	Ног	urly Rate	Billability					-
Operator	\$	13.85	100%					
Crew Leader	\$	29.06	30.0%					
Operations Manager	\$	45.00	7.2%					
Overhead Expenses				 				_
Overall Indirect Rate		50.0%						
Other Direct Costs								
Baling - Net Wrap (\$/bale)	\$	0.035	\$/L.F. @	4	wrap(s)	18.85	L.F./bale	
Baling - Twine (\$/bale)	\$	0.004	\$/L.F. @	1	wrap(s)	130	L.F./bale	
Grease - Square Bale (\$/bale)	\$	0.008	based on	\$ 4.00	/tube per	500	bales	
Grease - Round Bale (\$/bale)	\$	0.005	based on	\$ 4.00	/tube per	800	bales	
Diesel Fuel (\$/gallon)	\$	3.60						
Equipment Costs								
Large Square Baler (3x4x8)	\$	2.07	\$/bale					
Large Round Baler (5x6)	\$	1.16	\$/bale					
Small Round Baler (4x5)	\$	1.16	\$/bale					
Tractor Rental Rate (\$/hp-hr)	\$	0.12	\$ 27.44					
Stinger Stacker 6500	\$	2.09	\$/bale					
Loader	\$	18.75	\$/hr					
Pull-type round bale mover		1.40	\$/bale					