"Electric Vehicle Rough Road Course Test"

Prepared by
Electric Transportation Applications

Prepared by: _______________________________ Date: __________
Jude M. Clark

Approved by: _______________________________ Date: __________
Donald B. Karner
TABLE OF CONTENTS

1.0 Objectives 3
2.0 Purpose 3
3.0 Documentation 3
4.0 Initial Conditions and Prerequisites 4
5.0 Testing Activity Requirements 6
6.0 Glossary 12
7.0 References 14

Appendices

Appendix A - Electric Vehicle Rough Road Test Data Sheet 15
Appendix B - Vehicle Metrology Setup Sheet 17
1.0 Objective
The objective of this procedure is to identify the proper method for the control of Rough Road Course Testing being conducted as part of the EV America Performance Test Program. These methods are not meant to supersede those of the testing facility, those specifically addressed by SAE Test Standards, nor of any regulatory agency who may have or exercise control over the covered activities.

2.0 Purpose
The purpose of this test is to (1) accumulate standardized test-mileage on each vehicle over a test track that includes both rough road, water hazard and smooth track; and (2) test the vehicles ability to endure extreme conditions in a short time frame. This test is not intended to determine range or speed capabilities of any vehicle. No inferences concerning a vehicle’s speed, range or gradeability characteristics should be drawn from this test. This activity is meant to test the vehicle as a total system. Tests of specific subsystems or portions of individual subsystems are addressed by other Test Procedures. This testing and data acquisition meets the requirements specified in the EV America Technical Requirements.

3.0 Documentation
Documentation addressed by this procedure shall be consistent, easy to understand, easy to read and readily reproducible. This documentation shall contain enough information to "stand alone." That is, to be self-contained to the extent that all individuals qualified to review it could reasonably be expected to reach a common conclusion, without the need to review additional documentation. Review and approval of test documentation shall be in accordance with ETA-AC004, "Review of Test Results." Storage and retention of records during and following testing activities shall be completed as described in Procedure ETA-AC001, "Control, Close-out and Storage of Documentation."
4.0 Initial Conditions and Prerequisites

Prior to conduct of any portion of the testing, the following initial conditions and prerequisites shall be met. Satisfactory completion of these items shall be verified as complete and recorded on the Test Data Sheet.

4.1 Personnel conducting testing under this procedure shall be familiar with the requirements of this procedure, and when applicable, any and all appropriate SAE Standards, Test Instructions and Administrative Control Procedures. They shall also be certified by the Program Manager or Test Director prior to commencing any testing activities.

4.2 Ambient temperature during road testing shall be $\geq 90^\circ F$ ($\geq 32^\circ C$).

4.3 Battery temperature shall be $\geq 60^\circ F$ and $\leq 120^\circ F$.

4.4 The recorded wind speed at the test site during the test should not exceed 10 mph (16 km/h).

4.5 Testing shall be completed over a "rough road" course defined by Electric Transportation Applications which contains smooth asphalt, potholes, cobblestones, washboard and standing water. The test facility at Failure Analysis Associates (FaAA) in Phoenix has such features.

4.6 Speeds identified for each hazard have been determined to be the optimum speed for testing the vehicle at that hazard. Attempting to negotiate a hazard at a speed different than that identified should be avoided.

4.7 Vehicles shall be tested in their normal configuration with normal appendages (mirrors, bumpers, hubcaps, etc.). Certain items (hub caps, etc.) may be removed where necessary for safety.

4.8 Vehicles shall be loaded at curb weight plus 332 pounds.

4.9 Tires provided with the vehicle shall be the standard tire offered by the Electric Vehicle’s manufacture. Tires shall be inflated to the manufacturer’s recommended (placard) cold inflation pressure.

4.10 Manufacturer’s recommended lubricants shall be employed.

4.11 The main propulsion battery shall be fully charged in accordance with the manufacturer's recommended charging procedure and equipment in accordance with ETA-TP008, “Battery Charging.”

4.12 Should the batteries require cycling, they shall be charged and discharged in accordance with the requirements of procedures ETA-TP008, “Battery Charging,” and ETA-TP004, “Electric Vehicle Range at Steady Speed Test.”
4.13 Overall error in recording or indicating instruments shall not exceed ±2% of the maximum value of the variable being measured unless otherwise excepted. Periodic calibration shall be performed and documented to ensure compliance with this requirement.

4.15 The road surface type and condition (SAE J688), and lengths and grades of test route shall be noted.

4.16 Instrumentation used in the test shall be identified on Appendix B, and attached to the test results. It shall include the following information:
 4.16.1 Manufacturer
 4.16.2 Model Number
 4.16.3 Serial Number
 4.16.4 Last Calibration date
 4.16.5 Next Calibration date

4.17 Any deviation from the test procedure and the reason for the deviation shall be approved in advance and so noted on the appropriate data sheet(s).

4.18 Any necessary equipment shall be installed in a manner that does not hinder vehicle operation or alter the operating characteristics of the vehicle.

4.19 Accessories shall not be used during the rough road testing.

4.20 Speeds for each hazard or groups of hazards shall be posted on the test track in a manner which allows the driver(s) to achieve the required speed prior to encountering the hazard.

4.21 Prior to the initial test sequence, the vehicle’s underside shall have been inspected to identify pre-existing damage. Any damage shall have been recorded in writing. Photographs may be taken to document the conditions.

4.22 Subsequent to each completed test cycle, the vehicle’s underside shall again be inspected to ascertain any additional damage resulting from conduct of the test. Any additional damage shall be recorded in the Comments Section.
5.0 Rough Road Testing

CAUTION
Deviations from these prescribed speeds can present a safety issue for vehicles. All vehicles should maintain posted speed. If any vehicle cannot maintain or achieve speed, it shall be removed from the course.

CAUTION
Should any vehicle be unable to complete the requirements of the hazards or attain the required speed through the hazards, the driver of that vehicle shall move the test vehicle out of the test path.

NOTE
This procedure was written specifically for implementation at the Test Track at Failure Analysis Associates in Phoenix, AZ. As such, hazards and appropriate speeds for negotiation of those hazards are specific, and must be adhered to. All steps shall be completed in the order written. These hazards and their appropriate speeds are listed here:

FRONT SIDE
- 3" Deep Random Chuck Holes: 5 mph (8 km/h)
- Sine Wave: 10 mph (16 km/h)
- Railroad Crossing: 15 mph (24 km/h)
- Perpendicular Dip: 15 mph (24 km/h)
- Diagonal Dip: 15 mph (24 km/h)
- Single Wheel Dip: 15 mph (24 km/h)
- 1" Deep Random Chuck Holes: 20 mph (32 km/h)
- Adjustable Irregularities (tar strips): 25 mph (40 km/h)
- Road Crown: 30 mph (48 km/h)

BACK SIDE
- 1" Deep Random Chuck Holes: 25 mph (40 km/h)
- Belgian Blocks (cobblestone): 25 mph (40 km/h)
- Railroad crossing: 25 mph (40 km/h)
- 2" Standing Water: 20 mph (32 km/h)

NOTE
The vehicle shall be subjected to an eight (8) inch standing water test at Step 5.51, which succeeds completion of the second Rough Road (Step 5.46).
5.1 Record the VIN/Test number of the vehicle being tested on Appendix A.

5.2 Record the vehicle cold inflation tire pressure. Adjust the cold inflation tire pressure to meet the requirements of the manufacturer’s placard, if necessary.

5.3 Verify the traction battery is at the manufacturer’s established 100% SOC. If not, charge the battery in accordance with the requirements of ETA-TP008, “Battery Charging Procedure.”

5.4 Record the following environmental conditions:
 5.4.1 Ambient temperature;
 5.4.2 Battery temperature (at the discretion of the Test Manager);
 5.4.4 Wind velocity;
 5.4.5 Wind direction;

 NOTE
 If more than one vehicle is being tested, test vehicles shall maintain a nominal safe distance between themselves and the vehicle in front of them, in accordance with accepted standards.

 NOTE
 During this testing, if a vehicle fails electrically or mechanically for any reason other than a propulsion battery reaching its end of charge (as determined in Section 5.1 of procedure ETA-TP004), that vehicle shall be removed from this testing scheme until such time as the manufacturer/builder can repair it. See procedure ETA-AC002, "Control of Test Conduct" for additional details.

 NOTE
 The test sequence for this procedure will be to complete an 8-hour soak; complete ten stop/start evolutions; complete five laps through the rough road course, and then complete 20 laps at 55 mph. Specific direction is provided as follows.

 NOTE
 When instructed to decelerate in Steps 5.4 through 5.23, the driver shall begin the deceleration approximately 135 feet prior to the stop sign. These deceleration points shall be marked on the test track.

 NOTE
 Vehicle odometer readings shall be recorded on Appendix A upon initiation and completion of testing.
5.5 Move the vehicle to the handling pad (FaAA) or similar area. The vehicle’s windows shall be completely closed, except for the driver’s and front passenger’s windows, which may each be left open no more than one-half (1/2) inch. Vehicle shall be parked with the windshield facing South.

5.6 The vehicle shall be soaked for at least eight hours, during which time it shall have been exposed to a minimum ambient temperature of at least 100°F for at least one hour of the eight-hour soak. At the completion of this soak period, move the vehicle to the test track starting point.

5.7 From the starting point, smoothly accelerate the vehicle at maximum achievable acceleration to 45 mph, and continue approximately one (1) mile to the stop sign.

5.8 Decelerate the vehicle and bring it to a complete stop at the stop sign.

5.9 From the stop sign, rapidly accelerate the vehicle to 45 mph and continue approximately one (1) mile to the next stop sign.

5.10 Decelerate the vehicle and bring it to a complete stop at the stop sign. The first lap is complete.

5.11 From the stop sign, rapidly accelerate the vehicle to 45 mph and continue approximately one (1) mile to the next stop sign

5.12 Decelerate the vehicle and bring it to a complete stop at the stop sign.

5.13 From the stop sign, rapidly accelerate the vehicle to 45 mph and continue approximately one (1) mile to the next stop sign.

5.14 Decelerate the vehicle and bring it to a complete stop at the stop sign. The second lap is complete.

5.15 From the stop sign, rapidly accelerate the vehicle to 45 mph and continue approximately one (1) mile to the next stop sign

5.16 Decelerate the vehicle and bring it to a complete stop at the stop sign.

5.17 From the stop sign, rapidly accelerate the vehicle to 45 mph and continue approximately one (1) mile to the next stop sign.

5.18 Decelerate the vehicle and bring it to a complete stop at the stop sign. The third lap is complete.

5.19 From the stop sign, rapidly accelerate the vehicle to 45 mph and continue approximately one (1) mile to the next stop sign

5.20 Decelerate the vehicle and bring it to a complete stop at the stop sign.

5.21 From the stop sign, rapidly accelerate the vehicle to 45 mph and continue approximately one (1) mile to the next stop sign.

5.22 Decelerate the vehicle and bring it to a complete stop at the stop sign. The fourth lap is complete.
5.23 From the stop sign, rapidly accelerate the vehicle to 45 mph and continue approximately one (1) mile to the next stop sign.

5.24 Decelerate the vehicle and bring it to a complete stop at the stop sign.

5.25 From the stop sign, rapidly accelerate the vehicle to 45 mph and continue approximately one (1) mile to the next stop sign.

5.26 Decelerate the vehicle and bring it to a complete stop at the stop sign. The fifth lap is complete.

5.27 Stop-Start Portion of the test is complete.

5.28 From the Stop sign, accelerate the vehicle to 5 mph and negotiate the 3" deep random Chuck Holes.

5.29 After completing negotiation of the 3" Random Chuck Holes, smoothly accelerate the vehicle so as to enter the Sine Wave at 10 mph.

5.30 After completing negotiation of the sine wave, smoothly accelerate the vehicle so as to enter the Railroad Crossing at 15 mph.

5.31 After completing negotiation of the Railroad Crossing, maintain the vehicle speed so as to enter the Perpendicular Dip at 15 mph.

5.32 After completing negotiation of the Perpendicular Dip, maintain the vehicle speed so as to enter the Diagonal Dip at 15 mph.

5.33 After completing negotiation of the Diagonal Dip, maintain the vehicle speed so as to enter the Single Wheel Dip at 15 mph.

5.34 After completing negotiation of the Single Wheel Dip, smoothly accelerate the vehicle speed so as to enter the 1" Random Chuck Holes at 20 mph.

5.35 After completing negotiation of the 1" Random Chuck Holes, smoothly accelerate the vehicle speed so as to enter the Tie Down Area (simulated Tar Strips) at 25 mph.

5.36 After completing negotiation of the Tie Down Area (simulated Tar Strips), smoothly accelerate the vehicle speed so as to enter the High Crown Intersection at 30 mph.

5.37 After completing negotiation of the High Crown Intersection, maintain speed at 30 mph and negotiate the transition to the back side of the track.

5.38 Smoothly decelerate the vehicle so as to enter the 1" Random Chuck Holes at 25 mph.

5.39 Maintain speed so as to negotiate the Belgian Block section at 25 mph.

5.40 Maintain this vehicle speed so as to negotiate the Railroad Crossing section at 25 mph.
5.41 Smoothly decelerate the vehicle to achieve a speed of 20 mph through the Shallow (~2 inches) Water Bath.

5.42 After completing negotiation of the Shallow Water Bath, smoothly accelerate the vehicle to 45 mph [55 mph if completing for the fifth (5th) time]. Maintain this speed through the back turn.

5.43 Decelerate the vehicle to 5 mph so as to enter the 3" Random Chuck Holes at 5 mph.

5.44 Repeat steps 5.28 through 5.42, IN ORDER, until the vehicle has traveled five (5) laps (approximately 10 miles).

5.45 Accelerate the vehicle to 55 mph.

5.46 Drive the vehicle at 55 mph for 20 Laps (approximately 40 miles) or until the vehicle will not maintain 50 mph. If this is the first test sequence, continue to step 5.47. If this is the second test sequence, skip to Step 5.51.

5.47 When the vehicle has completed 20 Laps at 55 mph, the first phase of this test is complete. Move the vehicle to the charging area and record the following:

5.47.1 Within 5 minutes of placing the vehicle on charge, read and record the battery leakage current (battery-to-chassis). Current shall be less than 0.5 MIU.

5.47.2 Within 5 minutes of placing the vehicle on charge, read and record the charger leakage current (chassis to ground). Current shall be less than 5 mA.

5.48 Following current checks, move the vehicle to the garage or similar area for inspection of the vehicle. Record or verify recorded the following data on Appendix A:

5.48.1 Date and time of test phase completion
5.48.2 SOC reading (kWh consumed and percent)
5.48.3 Miles traveled / laps completed
5.48.4 Equipment failures, if any;
5.48.5 Equipment abnormalities, if any;
5.48.6 Damage to vehicle underside
5.48.7 Damage to any vehicle components
5.48.8 Battery leakage current
5.48.9 Driver Notes, if any

5.49 Subsequent to this inspection, move the vehicle to the charging station and recharge the vehicle’s main propulsion batteries to 100% SOC in accordance with ETA-TP008, “Battery Charging.”
5.50 Following satisfactory recharge of the main propulsion batteries, repeat steps 5.2 through 5.48.

5.51 Following the second completion of Step 5.46, the vehicle shall be driven to the standing water test. The vehicle shall be driven into the 8 inch water trough, and left there for 15 minutes. During this test, the key switch shall be turned OFF.

5.52 One (1) minute after entering the eight-inch water bath, using the methods described in UL-2232-1 and 2232-2, read and record the battery-to-chassis leakage current.

5.53 Fifteen (15) minutes after entering the eight-inch water bath, read and record the battery-to-chassis leakage current.

5.54 Following completion of Step 5.53, the vehicle shall be placed on charge. Within 5 minutes of placing the vehicle on charge, read and record the charger ground current and battery-to-chassis leakage currents.

5.55 Subsequent to the standing water test, move the vehicle to the garage area for inspection, and record the following information:

5.55.1 Date and time of test phase completion;
5.55.2 SOC reading (kWh, A/H or percent);
5.55.3 Miles / laps driven
5.55.4 Equipment failures, if any;
5.55.5 Equipment abnormalities, if any;
5.55.6 Damage to any vehicle components;
5.55.7 Battery leakage current;
5.55.8 Driver Notes, if any.

5.56 Return the vehicle to the charging area and place the vehicle on charge.

5.57 After the charge cycle has been completed, but in no instance sooner than the beginning of the next normal workday, record the total kWh of energy consumed by the vehicle from the start of charging following completion of the first cycle to completion of charging following the second test cycle. This energy will be used to determine the energy consumption values for the vehicle identified on the Data Sheet as “Charging Efficiency.”

5.58 The test is completed when the vehicle has accumulated at least 100 miles of travel. If after two charge cycles the vehicle has not traveled at least 100 miles, the Program Manager or Test Director shall determine the need to complete a third cycle.
6.0 Glossary

6.1 Battery Kilowatt-Hour Capacity - The capacity of a battery in ampere-hours determined as a function of the total distance traveled by the vehicle during performance of the 45 mph Constant Speed Range Test portion of ETA-TP004.

6.2 Curb Weight - The total weight of the vehicle including batteries, lubricants, and other expendable supplies but excluding the driver, passengers, and other payloads.

6.3 Effective Date - The date, after which a procedure has been reviewed and approved, that the procedure can be utilized in the field for official testing.

6.4 Gross Vehicle Weight Rating (GVWR) - The maximum design loaded weight of the vehicle specified by the manufacturer.

6.5 Initial Conditions - Conditions that shall exist prior to an event occurring.

6.6 Initial State of Charge (SOC) - The residual capacity in amperes-hours of a battery after a discharge (full or partial) expressed as a percent of the total battery ampere-hour capacity. Initial State of Charge is the SOC at the beginning of a test.

6.7 Prerequisites - Requirements that shall be met or resolved prior to an event occurring.

6.8 Program Manager - As used in this procedure, the individual within Electric Transportation Applications responsible for oversight of the EV America Performance Test Program. [Subcontract organizations may have similarly titled individuals, but they are not addressed by this procedure.]

6.9 Shall - Items which require adherence without deviation. Shall statements identify binding requirements. A go, no-go criterion.

6.10 Should - Items which require adherence if at all possible. Should statements identify preferred conditions.

6.11 State of Charge (SOC) - For this testing, the SOC of a battery is defined as the expected residual battery capacity, expressed in amperes-hours or watt-hours or miles, as a percentage of the total available. The 100% SOC basis (available ampere-hours, kilowatt hours or miles) is determined by the actual discharge capability of the main propulsion battery when discharged to the requirements of the 45 mph Constant Speed Range Test portion of procedure ETA-TP004, Revision 1.

6.12 Test Director - The individual within Electric Transportation Applications responsible for all testing activities associated with the EV America Performance Test Program.
6.0 Glossary (continued)

6.13 Test Director’s Log - A daily diary kept by the Test Director, Program Manager, Test Manager or Test Engineer to document major activities and decisions that occur during the conduct of a Performance Test Evaluation Program. This log is normally a running commentary, utilizing timed and dated entries to document the days activities. This log is edited to develop the Daily Test Log published with the final report for each vehicle.

6.14 Test Engineer - The individual(s) assigned responsibility for the conduct of any given test. [Each contractor/subcontractor should have at least one individual filling this position. If so, they shall be responsible for adhering to the requirements of this procedure.]

6.15 Test Manager - The individual within Electric Transportation Applications responsible for the implementation of the test program for any given vehicle(s) being evaluated to the requirements of the EV America Performance Test Program. [Subcontract organizations may have similarly titled individuals, but they are not addressed by this procedure.]

6.16 Test Weight - The weight of the vehicle as tested including driver, operator (if necessary), and all instrumentation.
7.0 References

7.1 EV America Technical Requirements

7.2 ETA-AC001, Revision 2 - "Control, Close-out and Storage of Documentation"

7.3 ETA-AC002, Revision 2 - "Control of Test Conduct"

7.4 ETA-AC004, Revision 2 - "Review of Test Results"

7.5 ETA-AC005, Revision 2 - “Training and Certification Requirements for Individuals Utilizing ETA Procedures”

7.6 ETA-AC006, Revision 2 - "Vehicle Verification"

7.7 ETA-AC007, Revision 1 - “Control of Measuring and Test Equipment”

7.8 ETA-TP004, Revision 2 - "Electric Vehicle Range at Steady Speed"

7.7 ETA-TP008, Revision 2 - “Battery Charging”

7.8 ETA-TP011, Revision 1 - “Receipt Inspection”
APPENDIX-A

Electric Vehicle Rough Road Test Data Sheet (Page 1 of 2)

Electric Transportation Applications

<table>
<thead>
<tr>
<th>Vehicle Number: __________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project No.:</td>
</tr>
<tr>
<td>Root File No.:</td>
</tr>
<tr>
<td>Test Date(s):</td>
</tr>
<tr>
<td>Test Driver:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Test Engineer:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Vehicle Setup

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VEHICLE WEIGHTS AS TESTED WITH DRIVER & INSTRUMENTATION</td>
<td>(Curb weight plus 332 pounds)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left Front:</td>
<td></td>
<td>Right Front:</td>
<td></td>
<td>Total Front:</td>
</tr>
<tr>
<td></td>
<td>(lbs or kg)</td>
<td>(lbs or kg)</td>
<td>(lbs or kg)</td>
<td>(lbs or kg)</td>
</tr>
<tr>
<td>Left Rear:</td>
<td></td>
<td>Right Rear:</td>
<td></td>
<td>Total Rear:</td>
</tr>
<tr>
<td></td>
<td>(lbs or kg)</td>
<td>(lbs or kg)</td>
<td>(lbs or kg)</td>
<td>(lbs or kg)</td>
</tr>
<tr>
<td>Total Weight:</td>
<td>(lbs or kg)</td>
<td>(lbs or kg)</td>
<td>(lbs or kg)</td>
<td></td>
</tr>
</tbody>
</table>

INSTALLED TIRES

(Placard or sidewall whichever is less)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Front</td>
<td>Right Front</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(psi or kPa)</td>
<td>(psi or kPa)</td>
<td>(psi or kPa)</td>
<td>(psi or kPa)</td>
</tr>
<tr>
<td>Left Rear</td>
<td>Right Rear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(psi or kPa)</td>
<td>(psi or kPa)</td>
<td>(psi or kPa)</td>
<td>(psi or kPa)</td>
</tr>
</tbody>
</table>

Track/Weather Conditions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Track Location:</td>
<td></td>
</tr>
<tr>
<td>Track Grade:</td>
<td>%</td>
</tr>
<tr>
<td>Ambient Temperature (initial):</td>
<td>(°F or °C)</td>
</tr>
<tr>
<td>Ambient Temperature (final):</td>
<td>(°F or °C)</td>
</tr>
<tr>
<td>Track Temperature (initial):</td>
<td>(°F or °C)</td>
</tr>
<tr>
<td>Track Temperature (final):</td>
<td>(°F or °C)</td>
</tr>
<tr>
<td>Wind Velocity (initial):</td>
<td>(<10 mph or 16 km/h)</td>
</tr>
<tr>
<td>Wind Velocity (final):</td>
<td>(<10 mph or 16 km/h)</td>
</tr>
<tr>
<td>Wind Direction (initial):</td>
<td>°</td>
</tr>
<tr>
<td>Wind Direction (completion):</td>
<td>°</td>
</tr>
</tbody>
</table>
Test Data Sheet

<table>
<thead>
<tr>
<th>Sequence No:</th>
<th>1</th>
<th>File No.:</th>
<th>Direction of Travel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soak Time (initial):</td>
<td></td>
<td>Soak Time (final):</td>
<td>(Minimum 8 hours)</td>
</tr>
<tr>
<td>Range Time (initial):</td>
<td></td>
<td>Range Time (final):</td>
<td></td>
</tr>
<tr>
<td>Odometer (initial):</td>
<td>(miles or kilometers)</td>
<td>Odometer (final):</td>
<td>(miles or kilometers)</td>
</tr>
<tr>
<td>Status of Charge (initial):</td>
<td>(SOC,kWh,Ah)</td>
<td>Status of Charge (final):</td>
<td>(SOC,kWh,Ah)</td>
</tr>
<tr>
<td>Battery Temp (initial):</td>
<td>(*F or °C)</td>
<td>Battery Temp (final):</td>
<td>(*F or °C)</td>
</tr>
<tr>
<td>Comments (initials/date):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed By:</td>
<td>(Printed Name)</td>
<td>(Signature)</td>
<td>(Date)</td>
</tr>
<tr>
<td>Reviewed By:</td>
<td>(Printed Name)</td>
<td>(Signature)</td>
<td>(Date)</td>
</tr>
<tr>
<td>Approved By:</td>
<td>(Printed Name)</td>
<td>(Signature)</td>
<td>(Date)</td>
</tr>
</tbody>
</table>
APPENDIX-B
Vehicle Metrology Setup Sheets
(Page 1 of 1)

<table>
<thead>
<tr>
<th>Instrument/Device</th>
<th>Calibration Due Date</th>
<th>Initials / Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifth Wheel S/N:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fifth Wheel Calibrator S/N:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datronic S/N:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datronic Set-up Sheet S/N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kWh Meter S/N:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt S/N:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tire Pressure Gauge S/N:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misc:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments (initials/date):

Completed By:

Reviewed By (QA):

Approved By: