

DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

Biochemical Platform Analysis

Biochemical Platform Review March 23, 2015 Alexandria, VA

Ryan Davis National Renewable Energy Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Goal Statement

- **Biochemical Platform Analysis Objective:**
- Provide process design and economic analysis support for the biochemical conversion platform, to guide R&D priorities for both NREL and BETO
 - Translate demonstrated or proposed research advances into economics quantified as \$/gal (\$/GGE) selling price
- •Project develops benchmark process models in Aspen Plus and related economic analysis tools, used to:
 - Assess cost-competitiveness and establish process/ cost targets for biofuel production pathways
 - Track progress towards goals through State of Technology (SOT) updates
 - Quantify sustainability metrics associated with modeled biorefinery conversion operations
 - Disseminate rigorous, objective modeling and analysis information in a transparent way (the "design report" process)
- •This project **directly supports the BETO Program** by assisting in the development of cost benchmarks and future targets for use in MYPP planning
 - Guide R&D towards economic viability, eventual adoption of hydrocarbon biofuels into U.S. market

Example of the use of TEA to track historical progress towards goals under NREL's ethanol program

Quad Chart Overview

Timeline

- Started: 2010
- Finish: 2017
- 75% complete

Budget

	Total Costs FY 10 – FY 12	FY 13 Costs	FY 14 Costs	Total Planned Funding (FY 15- Project End Date
DOE Funded (\$MM)	\$1.8	\$1.1	\$0.9	\$2.7
Project Cost Share (Comp.)*	NA	NA	NA	NA

Barriers

- Barriers addressed
 - BT-H: Cleanup/Separation
 - BT-J: Biochemical Conversion Process Integration
 - BT-K: Product Acceptability and Performance

Partners

- Partners
 - No partners with shared funding
- Other interactions/collaborations
 - INL Feedstock interface activities, supply chain analysis
 - ANL GREET modeling team, water quality assessment team
 - PNNL Biochemical modeling/report reviews
 - Industrial partners
 - Engineering subcontractors

Project Overview

- •NREL has a long history of establishing, maintaining, and exercising rigorous process models
 - Set objective, transparent benchmarks for a single plausible conversion pathway
 - Quantify economic impact of funded R&D improvements relative to benchmarks
 - Evaluate sensitivities to uncertainties, process alternatives
 - "Basic engineering" and process optimization
- Phased approach:
 - 1) Develop baseline models using best available data
 - 2) Validate and peer review modeling assumptions, publish "design reports"
 - 3) Assist in cost target development
 - 4) Iterate with researchers and external stakeholders as new data becomes available to refine models
- Types of analysis:
 - Techno-economic analysis (TEA)
 - Lifecycle analysis (LCA)/sustainability metrics
- Technology focus:
 - 2001-2012: cellulosic ethanol
 - 2013+: hydrocarbon biofuels, bioproducts NATIONAL RENEWABLE ENERGY LABORATORY

Approach (Technical)

- Process model in Aspen Plus based on NREL research data (where available), published literature (when necessary)
- Assumes nth-plant project cost factors and financing (ignores first-of-a-kind risks)
- Discounted cash-flow ROR calculation determines minimum fuel selling price (MFSP)
- Credibility of analysis supported by vendorbased cost estimates, thorough vetting with industry and research stakeholders

Plant Model in

Aspen Plus

 Research advances → Higher modeled conversion → Lower MFSP

Feedstock Composition

Operating Conditions

Conversion Yields

Approach (Management)

- Project management tracked using milestones
- Activities are highly integrated with research efforts, assist in go/no-go decisions for R&D
 - Example FY14 TEA assessment for PHB catalysis to fuels; no-go decision on the research pathway due to challenging cost potential
- Critical success factors:
 - Leverage process design to highlight barriers for scale-up/commercialization in under-researched areas
 - · Conduct sensitivity analysis to find biggest "bang for the buck" items for targeted improvement
 - Critical to maintain credible engineering analyses that are transparent and unbiased Work with
 engineering subcontractors to reduce uncertainty, subject design reports to thorough external peer
 review
- Challenges:
 - New technology pathways for hydrocarbon biofuels = lack of public data availability on key process steps, more modeling uncertainty
 - TEA shows that economics are more challenging for long-chain hydrocarbon pathways vs ethanol; requires rigorous process optimization, maximizing carbon yields, considering coproduct opportunities

Project Milestones/Activities		FY14			FY15			FY16 (not yet set)			et)	
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Biological conversion pathway												
Water use/WWT optimization in 2013 design case												
Biological conversion R&D out-year targets												
Lignin co-product modeling												
SOT assessment/out-year targeting updates												
Engineering design/alternative scenario studies												
Catalytic conversion pathway												
Catalytic conversion design report												
SOT assessment/out-year targeting updates												
Alternative catalytic processing scenarios												
\blacktriangle = Milestone, \blacktriangleright = Quarterly progress measure, \checkmark	= Go/r	no-go (decisio	n								

NATIONAL RENEWABLE ENERGY LABORATORY

Technical Accomplishments/Progress/Results: 2013 Biological Pathway Design Report

- TEA detailed modeling focused on near-term ("2017") goal of \$5/GGE selling price for renewable diesel blendstock
- Represents intermediate target on path to ultimate 2022 goal of \$3/GGE, but allows for high transparency of process/design details
- Vendor quotes provided for all new operations via engineering contractor
- Thoroughly vetted through 15 industry peer reviewers
- Baseline pathway derived from ethanol process: whole-hydrolysate conversion of C5 + C6 sugars to diesel-range fatty acid intermediate

Enzymes

- Aggressive targets for yield + productivity
- Assumed generic organism with fatty acid secretion capability •

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: **Dilute-Acid and Enzymatic** Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons

R. Davis, L. Tao, E.C.D. Tan, M.J. Biddy, G.T. Beckham, and C. Scarlata National Renewable Energy Laboratory

J. Jacobson and K. Cafferty Idaho National Laboratory

J. Ross, J. Lukas, D. Knorr, and P. Schoen Harris Group Inc.

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Technical Report NREL/TP-5100-60223 October 2013

2013 Design Report Results

2013 Hydrocarbon Design Report Results – Contrasted Against 2011 Ethanol Design Report	2012 Ethanol Target	2017 HC Target	
Minimum Fuel Selling Price (\$/GGE, 2011\$)	\$3.61	\$5.10	
Feedstock Contribution (\$/GGE, 2011\$)	\$1.13	\$1.76	
Enzyme Contribution (\$/GGE, 2011\$)	\$0.60	\$0.37	
Non-Enzyme Conversion Contribution (\$/GGE. 2011\$)	\$1.88	\$2.96	K
Yield (GGE/dry ton)	52	45	
Feedstock			K
Feedstock Cost (\$/dry ton)	\$58.50	\$80.00	
Pretreatment			
Solids Loading (wt%)	30%	30%	
Xylan to Xylose (including enzymatic)	90%	90%	
Xylan to Degradation Products	5%	5%	
Conditioning			
Ammonia Loading (g per L hydrolysate liquor)	4.8	1.6	
Hydrolysate solid-liquid separation	No	No	
Xylose Sugar Loss	1%	0%	V
Glucose Sugar Loss	0%	0%	
Enzymes			
Enzyme Loading (mg/g cellulose)	20	10	
Enzymatic Hydrolysis & Bioconversion			
Total Solids Loading (wt%)	20%	20%	
Combined Saccharification & Conversion Time (d)	5	6.5	
Corn Steep Liquor Loading (wt%)	0.25%	0.25%	
Combined <i>cellulose-to-glucose</i> x <i>glucose-to-product</i> *	86%	86%	,
Xylose to Product	85%	85%	
Arabinose to Product	85%	85%	
Metabolic Yield (total sugar-to-product)	0.44	0.28	

All: 45 vs 52 GGE/ton yield

 Theoretical metabolic energy yield limited to ~91% vs EtOH

Feedstock: \$80 vs \$58.50/ton

• Cost increase consistent with targets at INL

Enzymes: 10 vs 20 mg/g loading

 Reflects 5 more years of commercial enzyme progress

Conversion: Higher cost/complexity

- TCI = \$583 MM vs \$471 MM
- Facility on-line time = 90% vs 96%

More information:

2011 Ethanol Design Report: www.nrel.gov/docs/fy11osti/47764.pdf 2013 Hydrocarbon Design Report: www.nrel.gov/docs/fy14osti/60223.pdf

*Does not include losses to contamination or cell growth

NATIONAL RENEWABLE ENERGY LABORATORY

Update to Biological Design Case

 While 2013 design case targets are plausible, subsequent R&D Enzymes Acid + (Produced Air + Hydrogen Water benchmark data showed large Caustic Nutrients (On-Site) (for Wash) hurdles to overcome in short time Pretreatment Hydrolysate Biological Purification Renewable **Biomass** - Low C5 conversion with whole 8 Enzymatic Clarification Diesel Conversion 8 Hydrolysis Conditioning hydrolysate Blendstock Upgrading Low productivity Lignin ✓ Wastewater - Best performance seen with yeast To WWT To Boiler (requires extraction of intracellular lipids, not simple secretion of FAs) Enzymes Acid + Water Solvent Hydrogen (Produced Air + Water Caustic (for Wash) ✓Nutrients (On-Site) (for Wash) FY14 SOT modifies the process Pretreatment Extraction/ Biomass Renewable to add C5 sugar separation, Hydrolysate Biological Enzymatic ደ Solid/Liquid Purification Clarification Diesel Conversion Hydrolysis Conditioning Separations conversion to chemical co-8 Blendstock Upgrading product (succinic acid), extraction Lignin ✓ Wastewater C5-rich To Boiler of lipids from C6 train To WWT Stream Allows for more achievable targets by 2017 while maintaining MFSP Chemicals C5 Conversion **Bioconversion Metrics – C6 Train to Fuel Design Report Basis New Schematic Bioconversion Volumetric Productivity (g/L-hr)** 1.3 0.4 Glucose to Product [total glucose utilization] 87% [95%] 78% [100%] Xylose to Product [total xylose utilization] 82% [86%] 76% [98%] Arabinose to Product [total arabinose utilization] 85% [85%] Intermediate Product Recovery 97% 90% **Carbon Yield to RDB from Biomass** 26.2% 12.5% **Carbon Yield to Succinic Acid from Biomass** 12.2% n/a

Overview of NREL Biochem Project Structure

Out-Year Targeting for R&D

	Design Report Basis	2014 SOT	2015 Projection	2016 Projection	New 2017 Target	
Minimum Fuel Selling Price (\$/GGE, 2011\$) Feedstock Contribution (\$/GGE, 2011\$) Conversion Contribution (\$/GGE, 2011\$)	\$5.10 \$1.76 \$3.33	\$12.97 \$3.88 ¹ \$9.09 ¹	\$10.14 \$3.20 ¹ \$6.93 ¹	\$7.43 \$2.47 ¹ \$4.97 ¹	\$5.03 \$1.87 ¹ \$3.16 ¹	
RDB Fuel Yield (GGE/dry ton) Succinic Acid Yield (lb/dry ton) Feedstock	45 NA	18 197	20 206	20 232	22 270	
Feedstock Cost (\$/dry ton) ² Feedstock Blend	\$80 Blend	\$130 Stover	\$115 Stover	\$95 Blend	\$80 Blend	
Pretreatment/Separation Solids Loading (wt%)	30%	30%	30%	30%	30%	
Xylan to Xylose (including conversion in C5 train)	>73% No	73% Yes	75%	78% Yes	78% Yes	
Hydrolysate solid-liquid separation Xylose Sugar Loss (into C6 stream after acid PT separation)	NA	5%	Yes 4%	2.5%	1%	
<i>Enzymes</i> Enzyme Loading (mg/g cellulose)	10	14	12	10	10	
Enzymatic Hydrolysis & Bioconversion – C6 Tra		17	12	10	10	SOT demonstrated at
Total Solids Loading to Hydrolysis (wt%) Enzymatic Hydrolysis Time (d)	20% 3.5	15% 3.5	15% 3.5	17.5% 3.5	17.5% 3.5	NREL; projections based
Hydrolysis Residual Xylan to Xylose	90% >30%	77% 30%	85% 30%	85% 30%	90% 30%	on BETO R&D targets
Glucose Sugar Loss (into solid lignin stream after EH separation)	1%	5%	4%	2.5%	1%	
Expt'l bioconversion scale/method	NA	Bench scale/ Batch	Bench scale/ Fed-batch	Bench scale/ Fed-batch	Pilot scale/ Fed-batch	
Bioconversion Volumetric Productivity (g/L-hr) Lipid Content (wt%) Glucose to Product [total glucose utilization] ³	1.3 NA 87% [95%]	0.29 57% 75% [100%]	0.3 57% 75% [100%]	0.35 60% 78% [100%]	0.4 60% 78% [10%]	Decovery violate terrested to
Xylose to Product [total xylose utilization] ³ C6 Train Bioconversion Metabolic Yield (Process Xield) (a(a sugare))	82% [86%] 0.34 (0.28)	74% [98%] 0.26 (0.26)	74% [98%] 0.26 (0.26)	76% [98%] 0.27 (0.27)	76% [98%] 0.27 (0.27)	Recovery yields targeted to be demonstrated by 2017
Yield) (g/g sugars) Intermediate Product Recovery Carbon Yield to RDB from Biomass	97% 26.2%	<u>90%</u> 10.4%	90% 11.4%	90% 11.8%	90% 12.5%	(2014-2016 fixed constant prior to 2017 demo)
Coproduct Production Performance – C5 Train						
Bioconversion Volumetric Productivity (g/L-hr)	NA	0.3	1	1.5	2.0	
C5 Train Bioconversion Metabolic Yield (Process Yield) (g/g sugars)	NA	0.63 (0.59)	0.64 (0.60)	0.66 (0.65)	0.795 (0.74)	
Succinic Acid Recovery Efficiency Carbon Yield to Succinic Acid from Biomass	NA NA	80% 8.9%	80% 9.3%	80% 10.5%	80% 12.2%	

¹Cost breakdowns to feedstock vs conversion cost contributions are allocated in new target case according to carbon efficiency to RDB fuel vs succinic acid ² Feedstock costs based on a 5% "ash equivalent" basis for all years considered, consistent with values provided by INL ash "dockage" costs ³ First number represents sugar conversion to desired product (FFA), values in parentheses indicate total sugar utilization

NATIONAL RENEWABLE ENERGY LABORATORY

Conversion Stage Sustainability Metrics - Biological

Sustainability Metric ¹	2014 SOT	2015 Projection	2016 Projection	2017 Design Case	2022 Projection ²
GHGs (g CO ₂ -e/MJ fuel) (fossil emissions)	-63.8	-58.0	-72.0	-78.6	-301
Fossil Energy Consumption (MJ fossil energy/MJ fuel)	-0.9	-0.8	-1.0	-1.1	-1.3
Total Fuel Yield (GGE/dry ton)	18	20	20	22	44
Biomass Carbon-to-Fuel Efficiency (C in fuel/C in biomass)	10%	11%	12%	13%	26%
Biomass Carbon-to-Coproduct Efficiency (C in succinic acid coproduct/C in biomass)	9%	9%	11%	12%	NA ²
Water Consumption (m ³ /day; gal/GGE fuel) ¹	6,294 m³/day (42 gal/GGE)	6,146 m ³ /day (48 gal/GGE)	5,817 m ³ /day (45 gal/GGE)	5,773 m ³ /day (42 gal/GGE)	4,553 m ³ /day (12 gal/GGE)
Net Electricity Import (KWh/GGE)	19.9	19.8	21.1	24.0	0.3

¹ Note, gal/GGE water metric is fully allocated to fuel product (not distributed to coproduct train), thus appears high in this format

² 2022 projection represents one possible scenario based on converting a fraction of lignin to adipic acid co-product; pathway reverts back to whole-hydrolysate conversion to fuels, thus removes C5 sugars-to-succinic acid process train

- Project also tracks key sustainability metrics for biorefinery design cases
- Sustainability metrics above only consider conversion stage (not a full Well-to-Wheel LCA)
- Demonstrated improvements in GHG emissions alongside TEA costs when routing lignin to select coproduct options in support of 2022 targets for \$3/GGE

Technical Accomplishments/Progress/Results: 2014 Catalytic Pathway Design Report

- Design pathway based on aqueous phase reforming ("APR") catalysis of hydrolysate
 - Potential for flexibility around conversion of multiple hydrolysate • species beyond monomeric sugars, including oligomers, acetate, sugar degradation products, soluble lignin, etc.
 - Catalytic upgrading based on patent literature for commodity • sugars with additional guidance from industry (engineering subcontractor, technology vendors, and external industry guidance)
 - Maintains consistent front-end assumptions for biomass • deconstruction (deacetylation, PT, EH) as biological conversion pathway
- Followed similar approach as biological design report
 - Vendor/subcontractor inputs
 - Report vetted through 11 external peer reviewers •

for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons R. Davis, L. Tao, C. Scarlata, and E.C.D. Tan National Renewable Energy Laboratory J. Ross, J. Lukas, and D. Sexton Harris Group Inc. NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

Process Design and Economics

Technical Report NREL/TP-5100-62498

http://www.nrel.gov/docs/fy15osti/62498.pdf

Out-Year Targets: Catalytic Pathway

	2014 SOT Estimate	2015	2016	2017 Design Case Targets
Minimum Fuel Selling Price (\$/GGE, 2011\$)	\$7.29	\$5.89	\$4.83	\$4.05
Feedstock Contribution (\$/GGE, 2011\$)	\$2.58	\$1.95	\$1.41	\$1.02
Conversion Contribution (\$/GGE, 2011\$)	\$4.71	\$3.94	\$3.42	\$3.03
Yield (GGE/dry ton)	50.3	59.1	67.5	78.3
Feedstock				
Feedstock Cost (\$/dry ton) ¹	\$130	\$115	\$95	\$80
Feedstock Blend	Stover	Stover	Blend	Blend
Pretreatment				
Solids Loading (wt%)	30%	30%	30%	30%
Xylan to Xylose Conversion (overall) ²	81%	84%	87%	90%
Enzymatic Hydrolysis				
Solids Loading (wt%)	20%	20%	20%	20%
Enzymatic Hydrolysis Time (d)	3.5	3.5	3.5	3.5
Glucan to Glucose Conversion ²	77%	85%	85%	90%
Enzyme Loading (mg/g cellulose)	14	12	10	10
Sugar Conditioning				
Sugar Loss in S/L Separation (Belt Filter)	5%	4%	2.5%	1%
Microfiltration Soluble Retention Loss	10%	10%	10%	10%
Catalytic Conversion and Upgrading				
Hydrogen Feed Molar Ratio (H ₂ : total APR feed)	9.8	9.8	9.8	9.8
Total Hydrogen Consumption (wt % vs APR feed)	4.6%	5.3%	5.9%	6.5%
Hydrogenation WHSV (h ⁻¹)	0.7	0.85	1.0	1.2
APR WHSV (h ⁻¹)	0.7	0.8	0.9	1.0
Condensation WHSV (h ⁻¹)	0.7	0.85	1.0	1.2
Hydrogenation catalyst lifetime (years)	0.5	0.6	0.8	1
APR catalyst lifetime (years)	1	1.3	1.6	2
Condensation catalyst lifetime (years)	1	1.3	1.6	2
Overall C Yield to Fuels vs APR Feed Components	64%	70%	78%	86%
Overall C Yield to Fuels vs Biomass C (vs Total C) ³	29% (25%)	34% (28%)	39% (32%)	45% (36%)

*All projections based on external SMR H₂ sourcing

SOT demonstrated at NREL; projections based on BETO R&D targets

SOT:

-Based on patent literature (for corn syrup) -Catalyst lifetime reduced by 50%, C yield to fuels reduced by 25% (assumptions)

2015/2016:

-Interpolated projections to meet 2017 design case targets

¹Feedstock costs shown here based on a 5% "ash equivalent" basis for all years considered, per discussion with INL

 $^2\,\mbox{Values}$ represent glucan/xylan conversion to both monomeric and oligomeric sugars

 $^{\rm 3}$ "Total carbon" includes external natural gas carbon implicit in SMR-derived $\rm H_2$

NATIONAL RENEWABLE ENERGY LABORATORY

Conversion Stage Sustainability Metrics - Catalytic

Sustainability Metric ¹	2014 SOT	2015 Projection	2016 Projection	2017 Design Case	2022 Projection ²
GHGs (g CO ₂ -e/MJ fuel) (fossil emissions)	39.8	42.7	45.8	49.2	-69.4
Fossil Energy Consumption (MJ fossil energy/MJ fuel)	0.73	0.75	0.78	0.82	0.3
Total Fuel Yield (GGE/dry ton)	50	59	68	78	76
Biomass Carbon-to-Fuel Efficiency (C in fuel/C in biomass)	29%	34%	39%	45%	41%
Total Carbon-to-Fuel Efficiency (C in fuel/C in biomass + NG)	25%	28%	32%	36%	33%
Water Consumption (m ³ /day; gal/GGE fuel)	5,038 m³/day (12.0 gal/GGE)	4,635 m³/day (9.4 gal/GGE)	4,269 m³/day (7.6 gal/GGE)	3,817 m ³ /day (5.8 gal/GGE)	3,496 m ³ /day (5.3 gal/GGE)
Net Electricity Export (KWh/GGE)	4.9	3.6	2.6	1.7	0.6

¹ Note, all cases based on external SMR H₂ sourcing basis

² 2022 projection represents one possible scenario based on converting a fraction of lignin to adipic acid co-product

- Sustainability metrics above only consider conversion stage (not a full WTW LCA)
- Alternative H₂ scenarios in design report proved very useful in quantifying large differences between SMR H₂ sourcing and alternative scenarios via *in situ* reforming of sugars or biomass gasification
 - 3-6X lower GHG emissions from conversion stage for alternative (internal) H₂ scenarios vs SMR basis

Alternative H₂ Sourcing Scenarios

- Base case assumes large hydrogen import purchased from off-site natural gas SMR production (*ex situ*)
- Alternative case investigates producing hydrogen internally (*in situ*) via reforming reactions from a fraction of hydrolysate, or by diverting a fraction of feedstock biomass to gasification train
 - Increases cost to \$5.48/GGE (in situ), \$4.95/GGE (gasification)
 - Requires large fractional diversion of hydrolysate (41%, *in situ*) or biomass (36%, gasification) to generate required H₂ = reduced fuel yield
 - Although lower yield/higher cost, also tradeoffs in sustainability

Biochemical Pathways: Path to \$3/GGE

- We selected a small subset of chemical coproducts among many more possibilities
- Some coproducts show the <u>potential</u> to achieve \$3/GGE target, others do not
- Critical to consider market volume capacity for coproducts from a high-volume industry such as biofuels
 - >25k tons/yr world market volume = minimum cutoff applied here
- TEA is currently higher-level for this process, but will be focus for future work in support of 2022 targets

World Production			
(thousand	Price	Projected	
tons/year)	(\$/ ton)	growth rate	Primary Usage
>12,000	3200	5%	Synthetic rubber
			Tetrahydrofuran,
>1,000	3170	5%	specialty chemicals
>3,000	1700	4-4.5%	Nylon-6,6
>5,700	1000	2.5%	Nylon-6,6 precursors
	Production (thousand tons/year) >12,000 >1,000 >3,000	Production (thousand Price tons/year) (\$/ ton) >12,000 3200 >1,000 3170 >3,000 1700	Production (thousand Price Projected tons/year) (\$/ ton) growth rate >12,000 3200 5% >1,000 3170 5% >3,000 1700 4-4.5%

Relevance

TEA Progression Goals: Biological

TEA Progression Goals: Catalytic (in situ H2)

NREL TEA modeling is highly relevant to BETO goals:

•Helps guide R&D, DOE decisions, out-year target projections

- Technical targets (yields, process performance, etc)
- Cost targets (BETO MYPP goal: \$3/GGE MFSP by 2022)
- Identifies key R&D directions (yields, coproduct opportunities, etc)
- •Analysis can serve a wide variety of stakeholders
 - Industry (facilitate interaction between industry, NREL, DOE)
 - TEA helps to "de-risk" a technology during research stages, prior to commercialization
 - Research community, decision makers

Nov 2014 MYPP Performance Goal:

"By 2017, achieve an nth plant modeled conversion cost of \$3.30/GGE via a biochemical or chemical conversion pathway. This contributes to an MFSP of \$5.10/GGE, an interim target on the path to \$3/GGE fuels."

Future Work

Design/engineering assessment:

- Collaboration with NREL Pilot Scale Integration project to better understand optimal design and cost for commercial-scale aerobic bioreactor systems – Q2 milestone
- Collaboration with NREL LCA team to consider recommendations for strategies to reduce air pollutant emissions from NREL's biological pathway model – Q4 Quarterly Progress Measure

Alternative scenario modeling development:

- Publication of NREL technical report documenting new C5/C6 parallel conversion strategy (fuels + coproducts); report will incorporate any pertinent updates to refine prior design case model Q3 milestone
- Preliminary TEA for catalytic conversion of furans-to-hydrocarbons, in collaboration with NREL Catalytic Conversion of Sugars project – Q4 milestone
- 2015 State of Technology assessment for FY15 R&D data Q4 milestone

- achievement of \$3/GGE by 2022 Q2 FY16 go/no go
- Likely to require lignin conversion to coproducts (R&D currently in progress)

Summary

- Biochemical Analysis task has seen a tremendous amount of activity and achievements since FY13 peer review
 - FY13 biological pathway design report published, showing one path to intermediate \$5/GGE target and another to 2022 \$3/GGE target
 - Biological pathway subsequently revised to pursue parallel conversion of C6 sugars to fuels, C5 sugars to chemical coproducts
 - FY14 catalytic pathway design report published showing intermediate paths to 4-5/GGE dependent on H₂ source, further paths to 3/GGE
 - Established out-year targets through 2017 to begin guiding near-term R&D goals at NREL, priorities at BETO (including MYPP projections)
 - Quantification of sustainability metrics for both conversion pathways
- TEA work is highly relevant to supporting program directions for BETO, near- and long-term R&D for NREL
- Supports industry and research community via transparent models and design reports, communication with stakeholders
- Further efforts planned moving forward around engineering/design optimizations, model refinements to further improve rigor for complex hydrocarbon pathway models

Additional Slides

Responses to Previous Reviewers' Comments from 2013 Review

•This kind of work is worth doing, but it needs independent verification.

•One means of achieving this important step is the design case peer review process, which is undertaken by NREL's design reports that document the details of established models prior to publication and the release of these reports. This process solicits feedback from stakeholders in industry, academia, and other national laboratories with representation that spans all technology areas covered in the given pathway model. In many cases, the models and resulting cost estimates are modified as a direct result of the peer review feedback received prior to publication of the final report. Additionally, NREL maintains working relationships with outside partners, and strives to capitalize on opportunities for additional modeling feedback, validation, and/or improvement through these channels, as we are able to incorporate such inputs in publicly available reports.

•Very important to be able to track costs and direct R&D efforts. On-site enzyme production is a questionable approach.

•As noted in recent design report documents, the primary intention for inclusion of on-site enzyme production is to improve transparency in determining the true cost of cellulase enzymes for large-scale production of cellulosic biofuels. The intent is not to imply a judgment call about whether or not the industry should align to this mode of enzyme distribution. Further rationale for this approach in the context of NREL's integrated biochemical process models may be found in the pertinent design report documentation.

Publications, Patents, Presentations, Awards, and Commercialization

- R. Davis, L. Tao, C. Scarlata, E.C.D. Tan, et al., "Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: Dilute-acid and enzymatic deconstruction of biomass to sugars and catalytic conversion of sugars to hydrocarbons." NREL Technical Report, NREL/TP-5100-62498, March 2015; <u>http://www.nrel.gov/docs/fy15osti/62498.pdf</u>
- R. Davis, L. Tao, E.C.D. Tan, M.J. Biddy, G.T. Beckham, C. Scarlata, et al., "Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: Dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons." NREL Technical Report, NREL/TP-5100-60223, October 2013; <u>http://www.nrel.gov/docs/fy14osti/60223.pdf</u>
- L. Tao, D. Schell, R. Davis, E. Tan, R. Elander, A. Bratis, "Achievement of ethanol cost targets: Biochemical ethanol fermentation via dilute-acid pretreatment and enzymatic hydrolysis of corn stover." NREL Technical Report, NREL/TP-5100-61563, April 2014; <u>http://www.nrel.gov/docs/fy14osti/61563.pdf</u>
- R. Brunecky, S. E. Hobdey, L. E. Taylor II, L. Tao, M. P. Tucker, M. E. Himmel, S. R. Decker, "High temperature pre-digestion of corn stover biomass for improved product yields," *Biotechnology for Biofuels*, 7:170, doi:10.1186/s13068-014-0170-2, 2014.
- X. Chen, J. Shekiro, T. Pschorn, M. Sabourin, L. Tao, R. Elander, S. Park, O. Trass, K. Flanegan, E. Nelson, E. Jennings, R. Nelson, D. Johnson, M. P. Tucker, "A highly efficient dilute alkali deacetylation and mechanical (disc) refining process for the conversion of renewable biomass to lower cost sugars," *Biotechnology for Biofuels*, 7(1): p. 98., 2014.
- D. Sievers, L. Tao, D. Schell, "Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover," *Bioresource Technology*, 167: p.291-296, 2014.
- L. Tao, Xin He, Eric C.D. Tan, Min Zhang, A. Aden, "Comparative techno-economic analysis of n-butanol production from corn grain and corn stover," *Biofuels Bioproducts & Biorefining*, 8(3): p. 342-361, 2014.
- C.J. Scarlata, R.E. Davis, L. Tao, E.C.D. Tan, M.J. Biddy, "Perspectives on process analysis for advanced biofuel production." Invited book chapter, *Direct Microbial Conversion of Biomass to Advanced Biofuels*; Edited by M. Himmel; 2015, publication in process.
- L. Tao, E. C. D. Tan, A. Aden, R. T. Elander, "CHAPTER 19: Techno-Economic Analysis and Life-Cycle Assessment of Lignocellulosic Biomass to Sugars Using Various Pretreatment Technologies." Invited book chapter, *Biological Conversion of Biomass for Fuels and Chemicals: Explorations from Natural Utilization Systems*, ed: The Royal Society of Chemistry, DOI:10.1039/9781849734738-003582014, pp. 358-380, 2014.
- R. Davis, L. Tao, E. Tan, M. Biddy, C. Scarlata, "2013 NREL design report: Biochemical conversion of biomass-tohydrocarbons, process design and economics." Presented at the 2014 AICHE Annual Meeting, November 2014, Atlanta, GA.
- E. Tan and L. Tao, "Sustainability metrics and life-cycle assessment for biochemical conversion of corn stover to cellulosic ethanol, isobutanol, and n-butanol." Presented at the 2013 AIChE Annual Meeting, November 2013, San Francisco, CA.
- X. Chen, N. J. Nagle, L. Tao, M. Tucker, "Furfural production as a by-product of lignocellulosic biofuel process." Presented at the 2013 AIChE Annual Meeting, November 2013, San Francisco, CA.

Backup Slides

TEA Cost Projections to 2017 – Catalytic Pathway

With Feedstock Cost Progression

With Feedstock Cost Progression (Detail)

	2014	2015	2016	2017
Feedstock Basis	Corn Stover	Corn Stover	Blend	Blend
Total feedstock cost to biorefinery at 5% ash equivalent (\$/dry ton)	\$130	\$115	\$95	\$80
Ash dockage vs 5% baseline (\$/dry ton) ¹	\$11.28	\$8.70	\$4.40	-

¹ Ash dockage fee is included in the overall "cost to biorefinery" and accounts for variances in ash content above 5% projected by INL prior to 2017 (10.5% in 2014, 9% in 2015, 7% in 2016)

NATIONAL RENEWABLE ENERGY LABORATORY

2013 Biological Design Report: Metabolic <u>Product/Pathway Selection</u>

Product	Theoretical yield (metabolic, wt%)	Theoretical carbon yield (metabolic)	Theoretical energy yield (metabolic)
Ethanol	51%	67%	98%
Pentadecane	29%	62%	88%
Farnesene (DXP pathway)	29%	64%	85%
Farnesene (MVA pathway)	25%	56%	74%
Fatty Acid (Palmitic acid)	36%	67%	89%
FAEE (Ethyl palmitate)	35%	67%	90%
Fatty Alcohol (Hexadecanol)	34%	67%	93%

Refs: Rude et al, Current Opinion in Microbiology 2009 (12); Huang et al, Energy Environ. Sci. 2011 (4); Dugar et al, Nature Biotechnology 2011 (29), DOE CTAB Roadmap 2012

- Ethanol leverages decades of NREL R&D experience
- HC pathways are much newer given advances in metabolic engineering
- No single best pathway selected by NREL or DOE
- Intention here is to evaluate a <u>representative</u> "middle-of-the-road" product for TEA analysis of the general biological conversion technology pathway
- FFA pathway was selected here due to:
 - a) Represents median energy yield of all HC pathways (good indicator of economics)
 - b) FFA synthesis is a fundamental pathway extensively studied
 - Avoids selection of fuel product(s) targeted by industry

2013 Biological Design Report: Costs for Alternative Biological Pathways

Pathway	Theoretical metabolic mass yield	Theoretical carbon efficiency	MFSP (\$/gal)	MFSP (\$/GGE)	Production (MMgal/yr)	Production yield (gal/dry ton biomass)
Pentadecane	0.29	0.63	\$5.19	\$4.96	30.0	41.4
Farnesene (MVA)	0.25	0.56	\$6.25	\$5.97	27.0	37.3
Farnesene (DXP)	0.29	0.64	\$5.44	\$5.20	31.1	43.0
Farnesene (Anaerobic)	0.32	0.71	\$4.61	\$4.41	34.8	48.0
Fatty ester (palmitate ethyl ester)	0.35	0.67	\$5.83	\$5.55	28.9	40.0
Fatty acid (palmitate, base case)	0.36	0.67	\$5.35	\$5.10	31.3	43.3
Fatty alcohol (hexadecanol, anaerobic)	0.34	0.67	\$4.94	\$4.70	32.3	44.5

Overview of Catalytic Conversion Process

- Whole-hydrolysate conversion pathway, otherwise same targets as biological case for PT + EH
- Requires more extensive hydrolysate cleanup to remove SS fines (microfiltration), ions (IX) for catalyst protection
- Conversion process:
 - Hydrogenation + APR yields oxygenated intermediates <C7
 - Condensation oligomerizes APR products to fuel-range paraffins and monooxygenates
 - Mild hydrotreating to complete deoxygenation of condensation organic product phase
 - Conversion yields, operating conditions based on patent literature

Enzymatic Hydrolysis, Hydrolysate Conditioning & Purification

Condensate to process water

Framing the Analysis: Sensitivity Plots

Succinic Acid

Product	World Production (thousand tons/year)	Price (\$/ton)	Projected growth rate	Primary Usage
1,4 Butanediol	>1,000	3170	5%	Tetrahydrofuran, specialty chemicals
Maleic Anhydride	>2,000	1240	5%	Polyster resin, BDO, Fumaric Acid
Tetrahydrofuran	>1,500	2300	5%	Polymers, solvents
Poly-butyl succinate	>10-15			Polymer
Pyrrolidinones	>500			Solvent