Narrow Band Nitride Phosphors

Peter Schmidt, Helmut Bechtel, Thomas Diederich, Cora Hecht, Jacqueline Merikhi, Sietse Oostra, Philipp Pust, Erik Roeling, Wolfgang Schnick, Baby S. Schreinemacher, Oliver Steigelmann, Andreas Tücks, Niels van der Veen, Gabi Viehs, Volker Weiler, Detlef Wiechert

Philips Lumileds Jan 28, 2015

> PHILIPS LUMILEDS

Need for Improved Down-Converters

Emission band width reduction to drive efficiency improvements

• 2014 DOE SSL MYPP core technology research task down-converters

"Explore new high-efficacy wavelength conversion materials for the purposes of creating warm-white LEDs, with a particular emphasis on improving spectral efficiency with high color quality and improved thermal stability. Non-rare earth metal and nontoxic down-converters are encouraged."

- Focus on Eu²⁺ doped nitride materials
 - Low doping levels, rare earth free host lattices
 - Strong absorption, high quantum efficacy, low thermal quenching
 - Stable, condensed lattice structures
 - Nontoxic, environmental friendly

Structural Limitations of State-of-the-Art Red Eu²⁺ Phosphors

- Industry standard materials show broad composed emission bands originating from multiple Eu²⁺ sites
 - (Sr,Ca)SiAIN₃:Eu ("SCASN") shows statistical distribution of Si and Al on same site, SiAION formation tendency
 - (Ba,Sr)₂Si₅N₈:Eu ("BSSN") shows two chemically quite different M sites
- Emission FWHM in the ~2000 2400 cm⁻¹ (~70 – 100 nm) range
- ~ 40% LER penalty (2700 K, CRI90) compared to theoretical limit [1]

[1] see Phillips, J. M., M. E. Coltrin, et al. (2007) Laser & Photonics Review 1(4): 307-333

MSi₂O₂N₂:Eu - Model Compounds for Structure – Emission Property Relations

- Si₂O₂N₂²⁻ layers as common structural motif
- Differences in local cation coordination → differences in luminescence properties; cyan (Ba), green (Sr) and yellow (Ca) emission
- Small Stokes shift, very narrow band emission for M = Ba

H. A. Höppe, F. Stadler, O. Oeckler, W. Schnick, *Angew. Chem. Int. Ed.* **2004**, *43*, 5540
 O. Oeckler, F. Stadler, T. Rosenthal, W. Schnick, *Solid State Sci.* **2007**, *9*, 205
 J. Kechele, O. Oeckler, F. Stadler, W. Schnick, *Solid State Sci.* **2009**, *11*, 537-543

Narrow Eu²⁺ Emission in BaSi₂O₂N₂

Search for Narrow Red

- Narrow red: EuN₈ instead of EuO₈ cube?
- SrMg₃GeN₄ & SrMg₂Ga₂N₄: 1st nitride materials described by Park et al. in 2008 ^[1] showing cuboidal SrN₈ units
- Order variants known for a variety of oxide compounds (R. Hoppe et al. 1984 96), e.g. NaLi₃SiO₄ what about nitrides?

• (General) research approach:

[1] Park, D. G., Y. Dong, et al. (2008). Solid State Sciences 10(12): 1846-1852.

SLA: 1st Narrow Band Red Eu²⁺ Emitter

- Strontium aluminate with cuboidal SrN₈ coordination, chain-like arrangement of Sr atoms
- 2 Sr sites, structurally nearly identical
- Highly condensed network of ordered LiN₄ and AlN₄ tetrahedra
- Emission band located at ~650 nm, low energy Stokes shift and FWHM (970 and 1180 cm⁻¹)

PHILIPS LUMILEDS

Thermal Stability of SLA Red Emission

- SLA meets MYPP target of 95% rel. QY (150°C/25°C)
- High QE up to $T > 200^{\circ}C$
- Stability over time comparable with commercial red nitride emitters

Warm White LED Application

- highest LER gain for low CCT, high CRI
- multi phosphor mix
- CRI: 90-98, R9: 50-96
- ~4-12% LER increase (depending on CRI/R9)

Minimum Eu²⁺ FWHM and Projected Efficiency Gains

- FWHM ~ 900 cm⁻¹ is seen as practical limit
- Expected efficiency gain over commercial 27.90 (R9 > 50) solution: ~30%
 - ~618 nm peak wavelength,
 ~33 nm FWHM
- DOE MYPP target 2020: <30 nm FWHM all colors
 - challenging to be met
 with Eu²⁺ in red spectral
 range

LUMILEDS

Narrow Band Eu²⁺ Red Status & Outlook

DOE MYPP 2014

A.1.3 Down-Converters

Description: Explore new, high-efficiency wavelength conversion materials for the purposes of creating warm-white LEDs, with a particular emphasis on improving spectral efficiency with high color quality and improved thermal stability and longevity. Non-rare earth metal and nontoxic down-converters are encouraged.

Metrics	2013 Status	2020 Targets	2014/15	future
Quantum yield (25°C) across the visible spectrum	95% (Green) 90% (Red)	99% (Green) 95% (Red)	\checkmark	
Thermal stability – Relative quantum yield at 150°C vs. 25°C	90%	95%	✓	
Average conversion efficiency ¹⁹ (pc- LED)	70%	74%	✓	
Spectral FWHM	100 nm (Red)	<30 nm for all colors	50 nm (Red)	<30 nm green, < 35 nm red
Color shift over time (pc-LED)	∆u'v' <0.007 @ 6,000 hours	∆u'v' <0.002 over life	✓	tbd
Spectral efficiency relative to a maximum LER ~395 lm/W	81%	100%	76% (R _a 8 > 90, R9 > 50)*	>95%

* Emission peak shift to shorter wavelengths (615 – 630 nm) required to maximize LER gains

Summary

- SLA is the first member of the new class of high efficiency narrowband red emitting nitride phosphors nearly showing a bisection of band widths of red nitride phosphors in the market
- Practical limit of Eu²⁺ FWHM is seen at ~900 cm⁻¹ (25 35 nm, green → red) allowing an efficacy gain of ~30% by replacing commercial red nitride phosphors by future NBR phosphors
- Research to focus on identifying red emitters with shorter wavelength emission to maximize LER gains

LUMILEDS

Thank you