Engineering an Adsorbent-Based Hydrogen Storage System:

What Have We Learned?

Don Siegel,¹ Bruce Hardy,² and the HSECoE Team

¹System Architect-Adsorbent System, Mechanical Engineering Department, University of Michigan ²Savanah River National Laboratory

> Hydrogen Storage Summit, Golden, CO – January 27-28, 2015

Overview

- For the past 5 years the HSECoE has been developing hydrogen storage systems based on adsorbent, metal hydride, and chemical hydride media
- As we near the Center's conclusion, we seek to translate insight gained from the Center to the materials development community
- This presentation summarizes:
 - 1. Lessons learned in the development of a MOF-5-based storage system
 - 2. Materials properties needed to achieve DOE targets (Adsorbent Acceptability Envelope)

Engineering *around* an **imperfect** material can guide development of an optimal material

HSECoE Goals – Adsorbent System

- Model, design, and construct an adsorbent-based hydrogen storage system that has the potential to meet DOE 2017 targets.
- Reveal design tradeoffs, e.g.:
 - Gravimetric vs. volumetric density
 - Capacity & cost vs. fill time
 - Pros/cons of various HX designs
- Guide materials development by identifying materials properties that most strongly impact system performance.

Part 1: HSECoE Highlights

MOF-5 Selected as Baseline Adsorbent

Good combination of volumetric and gravimetric density; Available in large quantities (BASF)

System Performance Metric

The Center developed a multivariable approach to measure design tradeoffs. This model was used to rank various system concepts.

Gravimetric Density Change from 2017 Target

Rapid System Design Tool

Narrowed space of possible designs to 4 "systems of interest."

4. MATI with 0.32 g/cc compacted MOF-5 pucks

David Tamburello, SRNL

System Prototypes

Two system prototypes are being built and tested in the final phase of the HSECoE

MATI*

Densified media Isolated cooling/heating flow

Hex-Cell Powder media Flow-through cooling + resistive heating

*Modular Adsorption Tank Insert

Densification of Powders

MOF-5 powders can be formed into pellets & pucks without binder

GW0117 – pellets 6x6 mm, 5 +/- 0.1% ENG, .391 g/cc with σ = .013 g/cc

J. Purewal *et al.,* J. Phys. Chem. C 2012, 116, 20199–20212 J. Purewal, *et al.,* International Journal of Hydrogen Energy **37**, 2723 (2012).

Improved Volumetric Density in MOF-5 Pellets

Monoliths have > 50% improvement in volumetric hydrogen density. Practical upper limit to density = ~0.5 g/cc (plastic deformation)

• Note: All curves currently assume skeletal densities of 2 g/cc and 100% packing efficiency.

Powder 5-60 bar & 80 K	0.3 g/cc + 5% ENG 5-60 bar & 80 K	0.3 g/cc + 5% ENG 5-60 bar & 80-160 K	0.5 g/cc + 5% ENG 5-60 bar & 80 K	0.5 g/cc + 5% ENG 5-60 bar & 80-160 K
20 g/l	22 g/l	31 g/l	22 g/l	34 g/l
60% packing efficiency:	20 g/l	26 g/l	21 g/l	27 g/l

J. Purewal *et al.,* J. Phys. Chem. C 2012, 116, 20199–20212 J. Purewal, *et al.,* International Journal of Hydrogen Energy **37**, 2723 (2012).

Stability: Robustness to Air-Exposure

Exposure tests show that MOF-5 undergoes limited capacity degradation in humid environments for exposure times up to 2 hours

Relative humidity = 45 %

Pellets, $\rho = 0.37 \text{ g/cm}^3$

Powder, $\rho = 0.13 \text{ g/cm}^3$

Thermal Conductivity

Reorientation and layering of ENG additions can dramatically improve the low conductivity of MOF-5

Scale-up of MOF-5

MOF-5 manufacturing process has delivered ~9.3 kg of material. Performance confirmed to be within 10% of lab-scale material

Batch Code	Reactor Size [L]	Amount [kg]	BET [m²/g]	LSA [m²/g]	Zn [wt%]	C [wt%]	Crystal size* [µm]	Particle size** [mm]
GP0372	200	3.1	2937	3838	32	37	0.2-2.0	
GP0374	200	3.5	2870	3794	34	37	0.2-2.0	
GP0375	200	3.2	2955	3896	34	37	0.2-2.0	
GP0378	Mix	9.3	2937	3877	30	37	0.2-2.6	0.1-1.3
GP0326	60	1	2905	3891	34	37	0.2-3.0	0.1-1.4
Sca	ale-Up Di	fference:	1%	.4%				7%
Reference GW0116	7	.14	2680	3547			0.2-2.0	

System Design Improvements

The center has identified lower cost designs, but limitations in capacity and loss of usable hydrogen remain

Phase 1 system: AX-21 powder, Type 3 CF tank, 200 bar, 80 K

Lower pressure \rightarrow lower cost, heavier tank \rightarrow comparable capacity!

Final system: MOF-5, Type 1 Al tank, 100 bar, 80K

End of Phase 1 **Hex-Cell System MATI System** Baseline Gravimetric Density Gravimetric Density Start Time to Full Flow (20°C) 100% Min. Delivery Temp Start Time to Full Flow (20°C) 100% Min. Delivery Temp. Fill Time (5kg H2) Max Delivery Temp. Fill Time (5kg H2) Max Delivery Temp. Start Time to Full Flow (-Start Time to Full Flow (-Min. Delivery Pressure Min. Delivery Pressure 20°C) 20°C) Transient Response Max. Operating Temp. Transient Response Max. Operating Temp. Fuel Purity Min. Operating Temp. Fuel Purity Min. Operating Temp. Wells-to-Power Plant Wells-to-Power Plant Max. Delivery Pressure Max. Delivery Pre-Efficency Efficency Loss of Useable H2 Min. Full Flow Rate Loss of Useable H2 Min. Full Flow R Fuel Cost System Cost Fuel Cost System Cost Cycle Life (1/4 - full) Onboard Efficiency Cycle Life (1/4 - full) Onboard Efficie Volumetric Density Volumetric Density

Part 2: Adsorbent Acceptability Envelope

Adsorbent Acceptability Envelope

Leverages knowledge gained by HSECoE in modeling, characterization, and construction of adsorbent system

Overview

Goal: Identify coupled adsorbent and storage vessel properties that can meet 700 bar and DOE targets

- Accomplished by:
 - Use of isotherms that yield necessary amount of **usable** hydrogen (not just total)
 - Depends on final (empty) and initial (full) states
 - Determined through numerical variation of isotherm parameters
 - Can also determine parameters that **optimize** usable hydrogen
 - Isotherms also determine enthalpy of adsorption
 - Requires knowledge of bulk, crystal, and skeletal densities
 - OR bulk density, inter-particle porosity, and intra-particle porosity

Definition: Usable Hydrogen

Determined using a temperature + pressure swing from T_{low} , P_{high} to T_{high} , P_{low} = 5 bar

UNILAN Isotherm

UNILAN model provides an accurate description of the MOF-5 experimental data, requiring only five parameters to predict uptake across a wide temperature range

$$n_{a} = \frac{n_{max}RT}{(E_{max} - E_{min})} ln \left(\frac{e^{-\Delta S_{0}/R} + \frac{P}{P_{0}} e^{E_{max}/RT}}{e^{-\Delta S_{0}/R} + \frac{P}{P_{0}} e^{E_{min}/RT}} \right)$$
$$n_{Total} = n_{a} + c(V_{v} - V_{p})$$
$$n_{Usable} = n_{Total} (T_{chg}, P_{chg}) - n_{Total} (T_{disch}, P_{disch})$$

 E_{max} and $E_{min} =$ The maximum and minimum values of $-\Delta H_0$ ($|\Delta H_0|$ is the isosteric heat) [J/mol]. $-\Delta H_0$ is uniformly distributed between E_{min} and E_{max} .

Purewal et al., J. Phys. Chem. C 2012, 116, 20199–20212

Assumptions and Operating Scenarios

The approach uses an assumed set of operating conditions and system architecture

System Architecture

Flow through (Hex-cell)

- Type 1 Al vessel
- 5:1 Length:diameter LN₂ jacket
- Internal HX = 20% mass
- 5.6 kg usable H₂ stored
- 1" MLVI
- MOF-5 like adsorbent
- 181 kg/m³ powder

Scenario 2: Ambient System

$$T_{low} = 230 \text{ K}$$

 $P_{high} = 100 \text{ bar}$
 $T_{high} = 400 \text{ K}$
 $P_{low} = 5 \text{ bar}$

Procedure

- 1. Set initial (full) and final (empty) T, P conditions
- 2. Fix entropy change, ΔS , to nominal value for MOF-5
- 3. Set value for bulk density of adsorbent, ρ_{bulk} (181 kg/m³ MOF-5 powder)
- 4. Back-calculate materials capacity targets based on system targets & system mass + volume
- 5. Numerically determine required isotherm parameters with respect to usable hydrogen
 - Optimize n_{max}, E_{max}, and E_{min} in UNILAN model to meet target values (at adsorbent level)
 - Convert isotherm parameters to gravimetric and volumetric H₂ densities (at adsorbent level)
- 6. Repeat steps 3-5 for different operating scenarios and materials densities

Materials Capacity Targets – Gravimetric

A powder MOF-5-like system can surpass 700 bar in gravimetric density at low-T

Materials Capacity Targets – Volumetric

A powder-based system falls short in volumetric H₂ density

Parametric Dependence on Number of Adsorption Sites

Vary number of adsorption sites (n_{max}) while keeping all other adsorbent properties constant

MOF-5 can surpass 700 bar on a gravimetric basis at cryogenic conditions. However, reaching the DOE 2017 target will require a 14% improvement in capacity.

Parametric Dependence on Adsorption Sites and ΔH

Many combinations of ΔH and n_{max} can in principle satisfy targets However, meeting volumetric targets with a powder system requires very large n_{max}

- Each curve represents an adsorbent having a combination of binding sites (n_{max}) and ΔH which would meet the DOE 2017 volumetric target
- Adsorbents having adsorption site heterogeneity (E_{min} ≠ E_{max}) generally require more adsorption sites to meet target
- Large E_{max} = E_{min} can meet target
 with smaller n_{max}

Gravimetric/Volumetric Tradeoff

Compaction can be used to increase volumetric density; however, it will come at a loss to gravimetric density arising from closure of inter-particle voids

Alternative Adsorbents?

MOF-5 is a good baseline, but higher-performing alternatives exist

Summary of Materials Requirements

...for a powder-based adsorbent, $P_{max} = 100$ bar

	System-level Targets		Materials-le			
System	Usable Gravimetric (wt.%)	Usable Volumetric (g/L)	Usable Gravimetric (wt.%)	Usable Volumetric (g/L)	Notes	
DOE Ultimate	7.5	70	27.4	156	Cryo-system	
		70	26.0	114	Ambient system	
DOE 2017	5.5	40	20.1	89	Cryo-system	
			19.1	65	Ambient system	
700 Bar	4.5	25	16.6	55	Cryo-system	
			15.7	40	Ambient system	

Concluding Remarks (1)

- The Adsorbent Acceptability Envelope has been developed to assess viability of hypothetical hydrogen adsorbents
 - Quantifies the amount of usable hydrogen stored
 - Formulated in terms of isotherm parameters and materials density
 - Applied to a powder-based, flow-through system designed by HSECoE
 - Cryogenic and ambient operating conditions explored
 - Extensions: Additional analysis of ambient-T and densified systems
- An advanced adsorbent may be able to surpass the performance of 700 bar compressed systems
 - Such a system could be attractive from an efficiency (low-P, 100 bar) and cost standpoint (metal tank) even though it would not meet DOE targets
- Achieving the DOE 2017 or Ultimate targets remains a daunting challenge

Concluding Remarks (2)

- Trade-off between volumetric and gravimetric density
 - Densification of powders can be helpful, but should be balanced with losses is gravimetric density and plastic deformation (pore collapse)
 - Achieving high surface area alone is insufficient
 - Materials research should focus on adsorbents that circumvent this tradeoff; high gravimetric and volumetric densities must be achieved *simultaneously*
- Adsorbent stability is important, but should be assessed based on likely/moderate failure modes:
 - E.g.: Withstand limited exposure to humid environments during assembly
- Low thermal conductivity of adsorbents can be overcome with engineering approaches

Acknowledgements

HSECoE Team

Bruce Hardy (SRNL)

David Tamburello (SRNL) Richard Chahine (UQTR) Mike Veenstra (Ford) Don Anton (SRNL) Manuela Gaab (BASF) Justin Purewal (formerly UM, now Ford)

Jesse Adams and Bob Bowman (DOE)

References

- 1. J. Yang, A. Sudik, C. Wolverton, and D. J. Siegel, *High capacity hydrogen storage materials: Attributes for automotive applications and techniques for materials discovery*, Chemical Society Reviews **39**, 656 (2010).
- 2. J. Purewal, D. Liu, J. Yang, A. Sudik, D. J. Siegel, S. Maurer, and U. Muller, *Increased volumetric hydrogen uptake in MOF-5 by powder densification*. International Journal of Hydrogen Energy **37**, 2723 (2012).
- 3. D. Liu, J. J. Purewal, J. Yang, A. Sudik, S. Maurer, U. Mueller, J. Ni, and D. J. Siegel, *MOF-5 Composites Exhibiting Improved Thermal Conductivity*. International Journal of Hydrogen Energy **37**, 6109 (2012).
- 4. J. Purewal, D. Liu, A. Sudik, M. Veenstra, J. Yang, S. Maurer, U. Muller, and D. J. Siegel, *Improved Hydrogen Storage and Thermal Conductivity in High-Density MOF-5 Composites*, Journal of Physical Chemistry C, **116**, 20199 (2012) DOI:10.1021/ jp305524f
- C. Xu, J. Yang, M. Veenstra, A. Sudik, J. J. Purewal, Y. Ming, B. J. Hardy, J. Warner, S. Maurer, U. Mueller, and D. J. Siegel, *Hydrogen Permeation and Diffusion in Densified MOF-5 Pellets*, International Journal of Hydrogen Energy, **38**, 3268 (2013). DOI:10.1016/j.ijhydene.2012.12.096
- 6. J. Goldsmith, A. G. Wong-Foy, M. J. Cafarella, and D. J. Siegel, *Theoretical Limits of Hydrogen Storage in Metal-Organic Frameworks: Opportunities and Challenges*, Chemistry of Materials **25**, 3373 (2013). DOI: 10.1021/cm401978e
- Y. Ming, J. Purewal, D. Liu, A. Sudik, C. Xu, J. Yang, M. Veenstra, K. Rodes, R. Soltis, J. Warner, M. Gaab, U. Muller, and D. J. Siegel, *Thermophysical Properties of MOF-5 Powders*, Microporous and Mesoporous Materials 185, 235 (2014). DOI: 10.1016/j.micromeso.2013.11.015
- 8. Y. Ming, H. Chi, R. Blaser, C. Xu, J. Yang, M. Veenstra, M. Gaab, U. Müller, C. Uher, D. J. Siegel, *Anisotropic Thermal Transport in MOF-5 Composites*, International Journal of Heat and Mass Transfer, **82**, 250 (2015). DOI: 10.1016/j.ijheatmasstransfer.2014.11.053