

Proudly Operated by Battelle Since 1965

Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems

Patrick Balducci, Senior Economist, Pacific NW National Laboratory

Hydrogen Energy Storage for Grid and Transportation Services Workshop Sacramento, California May 14, 2014

Valuation challenges

Software Type							Numb	er Rev	viewed
Electric System Planning Softv	vare								
Portfolio Planning								8	
Energy Production Cost	Simul	ation						11	
Bulk Transmission Planr	ning							7	
Distribution System Plan	ning							9	
Real-Time Grid Operations								6	
Energy Storage Systems								21	
TOTAL								62	
	ISOs/RT0s	Generators / IPPs	Energy	R&D / Consulting	Project Developers	Technology Providers	EndUsers	Finance Community	State & Federal Regulators
ystem Planning									
ortfolio Planning	Х	Х	Х	Х	Х				
nergy Production Cost Simulation	х	Х	х	х	Х				
ransmission System Planning	х	Х	Х	Х	Х				
istribution System Planning			X	X	X				
eal Time Grid Operations	v	~	×						
istribution System Operation	^	^	Ŷ	Y					
nergy Storage System			~	^					
stimate & Demonstrate Value		х	х	х	х	х	х	х	x
alculate System Size		x	х	х	х	х		х	
ontrol & Operate Installed Systems	х	х	х	х	х	х	х		
ptimize System Performance	х	х	х	х	х	х	х		

<u>Transmission and Distribution planning</u>
 Models lack standard features that allow
 the user to properly model energy storage.

Portfolio planning

Gaps exist for recognizing storage in planning and energy production cost models

 Energy Storage System Tools
 Despite the variety of tools available, many stakeholders still feel that numerous gaps exists in ES-specific software packages

Source: Lamontagne, C. 2014. *Survey of Models and Tools for the Stationary Energy Storage Industry.* Presentation at Infocast Storage Week. Santa Clara, CA.

Energy storage for Puget Sound Energy region

Proudly Operated by Battelle Since 1965

Project objective: Analyze and demonstrate the benefits of electrical energy storage on the distribution grid

Situation

 25MVa transformers at radial substations at Murden Cove and Winslow operate at or above target load

Requirements

- Multiple hours of capacity required
- Small footprint to fit within a substation
- Year-round operation capabilities
- Flexibility to perform multiple applications (e.g., balancing svcs., islanding)

Novel technical solution

 Containerized, electrochemical energy storage with a 2nd generation flow battery technology

Approaches used to value energy storage applications

Proudly Operated by Battelle Since 1965

Num.	Application	Final Assumptions
1	Capacity	Energy storage avoids the incremental cost of a peaker in 2018. Detailed proforma built to estimate revenue requirements for an F-class simple-cycle turbine with peak winter capacity of 221 MW. Line loss gross up, avoided reserve requirements and incremental capacity analysis performed to determine value, which was estimated at \$142 per kW-year.
2	Distribution Upgrade Deferral	Deferred costs of proposed distribution upgrades. On Bainbridge Island (BI), value derived from deferring substation costs (\$10.5 million) for nine years.
3	Outage Mitigation	Outage time, duration and number of affected customers on relevant circuits obtained using PSE outage data covering multiple years. Customers were sorted into customer classes using PSE data and values were assigned using Lawrence Berkeley National Laboratory outage cost data. ¹

¹Sullivan, M., Mercurio, M., and J. Schellenberg. 2009. "Estimated Value of Service Reliability for Electric Utility Customers in the United States." Prepared for U.S. Department of Energy by Lawrence Berkeley National Laboratory. Berkeley, CA.

Approaches used to value energy storage applications and system capital costs

Num.	Application	Final Assumptions
4	Balancing Services	Defined stochastic process was used to generate wind and load forecast error time series with statistical features similar to observed errors. Multiple Monte Carlo runs were then run to determine the balancing reserve requirement. AURORA and a PSE mixed integer linear programming (MILP) model used to determine the inc. and dec. balancing services prices. There were 50 balancing price simulations run and the mid-point was used.
5	Arbitrage	AURORA model used to determine energy price differentials (peak vs. off-peak) minus efficiency losses.
6	Capital Costs	Estimated at \$3,690 per kW at BI; \$4,384 per kW at BR- 24. Estimates include all battery, siting, electrical, thermal management, site/civil, installation, communications, and IT costs, as well as associated overheads.

Energy storage optimization tool inputs

out Result						
Pacific Northwest NATIONAL LABORATORY muddy Operated by Battelle Since 1965	– Battery paramet Dischargir Chargir Ener Pov	ag efficiency: 0.80654 ag efficiency: 0.83594 agy capacity: 16 MWh ver capacity: 4 MW Intial SOC: 0.5	Default	Price select All 50 prices Single price 24 25 26 27		
 Bainbridge Island Baker River 24 	- Input files Prices:	.\Input\price.xlsx	Browse	28 29 30 31		
 Services ✓ Arbitrage ✓ Balancing 	Balancing sig.: Capacity value: Deferral:	lancing sig.: .\Input\PSE_Reserve_2020_W_1. pacity value: .\Input\BI\CapacityValue.xlsx ferral: .\Input\BI\TDdeferral.xlsx		Run		
Capacity value Capacity value Distribution deferral Distribution	Outage: Outage power:	.\Input\BI\Outage.xlsx .\Input\BI\OutagePower.xlsx	Browse Browse	Cancel		
 Planned outage Random outage 	Output Output:	.\Output\Bl	Browse	Plot		

Energy storage optimization tool output

24-hour energy storage schedule for Bainbridge Island

Proudly Operated by Battelle Since 1965

Hourly value at Bainbridge Island for 24hour period

Summary of results (NPV benefits and revenue requirements over 20-year time horizon) – Bainbridge Island

Key lessons and implications of this assessment

- We developed procedures to site and size ESS
- Several energy storage applications were defined and examined
 - Capacity, outage mitigation, and distribution deferral values largely drive results
 - Balancing service and arbitrage values less significant in Pacific NW due to presence of low-cost hydro
- Site-specific non-battery costs could be significant (\$750-\$1,500 per kW)
- The proposed ESS generates positive net benefits to PSE on Bainbridge Island but not for the Baker River site; thus, location matters
- Any single use would not yield positive returns on investment; services must be bundled
- A tool for optimizing energy storage deployment was developed, as was an executable file and primer to guide users
- Final Phase I findings and the executable file / primer were submitted to BPA in mid-December 2013 and will be made available more widely in the coming months