Reinventing Lighting

DOE SSL R&D Workshop
Jan. 27, 2015

John Edmond
Cree, Inc. Co-Founder and Director, Advanced Optoelectronics Technology
LEAD THE LED LIGHTING REVOLUTION to obsolete energy-inefficient lighting
Outline

- Fundamental Approach
- LED Milestones
- LED Chips and Components
- The light bulb: Edison to LEDs
- LED General Lighting
- End Results: Jobs!
Outline

• Fundamental Approach

• LED Milestones

• LED Chips and Components

• The light bulb: Edison to LEDs

• LED General Lighting

• End Results: Jobs!
Vertical Integration

Approach
- Innovation and Technology drive actions at every level
- Vertical Integration enables end-to-end optimization

Result
- Best in class performance and cost
- Best customer experience and Quality
Innovation requires a lot of work and R&D dollars.
Outline

• Fundamental Approach

• LED Milestones

• LED Chips and Components

• The light bulb: Edison to LEDs

• LED General Lighting

• End Results: Jobs!
LED Milestones Timeline

1987

Cree founded NC State Univ.
Started with 6-Guys 1987
LED Milestones Timeline

1987
- Cree founded

1989
- Commercialized first blue LED SiC/SiC
First RGB Full Color Display (1993)
LED Milestones Timeline

1987
- Cree founded
- SiC/GaN Blue LEDs designed into VW Dashboard

1989
- DOE "White LED Dev. for General Illumination Applications" (10/00-10/04)

1995
- Commercialized first blue LED SiC/SiC
- First XBright® LED power chip

2002
- DOE "High Efficiency LED Lamp for Solid-State Lighting" (10/03-12/06)

2004
- First XLamp LEDs brought to market 50 LPW

2006
- First "Lighting-Class" LED components 100 LPW
- DOE "An Integrated Solid-State LED Luminaire for General Lighting" (10/06-9/08)

2007
- First commercially-viable LED downlight and LED streetlight

2009
- First commercially-viable LED PAR Lamp

Copyright © 2015, Cree Inc.
LED Milestones Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>First 100 LPW LED parking/canopy fixture.</td>
<td>Commercially available white LEDs exceed 150 LPW.</td>
</tr>
<tr>
<td>2011</td>
<td>First commercially-viable LED troffer.</td>
<td>Commercially available white LEDs exceed 200 LPW MKR.</td>
</tr>
<tr>
<td>2012</td>
<td>Cree introduces first sub $200 LED streetlight.</td>
<td>Cree introduces the Cree LED Bulb.</td>
</tr>
<tr>
<td>2013</td>
<td>Cree takes control of controls with SmartCast™ Technology.</td>
<td>Cree is the 1st to break the 300 LPW barrier.</td>
</tr>
</tbody>
</table>

Cree is the 1st to break the 300 LPW barrier.
DOE investments in SSL R&D: high impact

• **10** completed DOE-funded Cree projects since 2000
• **Joint investment:** $19.2MM DOE funding synergistic with $7.5MM Cree cost share

High *success* rate of projects + Major Cree IR&D *investment* = Rapid transition to *products*

• Proliferation into all levels of the Cree SSL value chain

DOE spin-outs: LRP-38
DOE spin-outs “inside”: AR24, LM16, A bulbs

DOE spin-outs: XQ, XB-G/E, MPL-TW
DOE spin-outs “inside”: XR-E, XP, XTE-HV

DOE spin-outs: EZ gen I, II
XBright, XThin
Ongoing DOE-funded Programs @ Cree

<table>
<thead>
<tr>
<th>Project</th>
<th>DOE / Cree Investment</th>
<th>Primary Focus Areas</th>
</tr>
</thead>
</table>
| “Scalable Light Module For Low-cost, High-efficiency LED Luminaires” | $2.35M / $2.35M | • Compact, high-efficacy, high-CRI LEDs
• Modular low-profile, cost-effective optical elements with high optical efficiency |
| (8/13-7/15) | | |
| “Scalable, Economical Fabrication Processes For Ultra-compact Warm-white LEDs” | $1.49M / $497K | • Ultra-compact LED (UCL) packages via new scalable, low-cost fabrication processes |
| (8/14-1/16) | | |
Outline

• Fundamental Approach

• LED Milestones

• **LED Chips and Components**

• The light bulb: Edison to LEDs

• LED General Lighting

• End Results: Jobs!
Start with a III-Nitride chip

- **SiC ($E_g=3.2eV$)**
 - Vertical current flow
 - (+) top, (-) bottom

- **SiC Flip**
 - Lateral current flow
 - (+) and (-) on bottom

- **EZ/WZ**
 - Vertical current flow
 - (-) top, (+) bottom
Chip Architecture Features

- A photon is a terrible thing to waste...
 - Surface Features
 - Beveled saw cuts (SiC)
 - Internal mirrors
 - Flip-chip

Copyright © 2015, Cree Inc.
State-of-the-art Blue Chip Performance

447 nm, $T_j \approx 25^\circ C$

Radiant Flux (mW) vs. Current (mA) graph showing:
- 82% efficiency at 822 mW for a current of 782 mA
- 79% efficiency at 350 mA current

Copyright © 2015, Cree Inc.
LED Chip & Component Toolbox

- Lenses: Glass, silicone, none
- Lead frames, molded plastic bodies, ceramic substrates, hybrids
- LP/MP/HP/COB
- HD arrays
- Modules
- CRI, spectral modifications
- BSY+R (TrueWhite™)
- High voltage topologies
- Chips:
 - Single, multiple
 - SiC, sapphire
 - tiny ↔ largest in the industry
 - Brightest epi (lm/mm²)
 - Price/performance for any application
- Shipping hundreds of millions of units per month
Continuous Improvement in LPW

- **HID**: 120 LPW
- **Fluorescent**: 100 LPW
- **CFL**: 80 LPW
- **LED**: 60 LPW
- **Incandescent**: 40 LPW

R&D Capability
- 2003: 131 LPW
- 2005: 161 LPW
- 2008: 186 LPW
- 2011: 208 LPW
- 2013: 254 LPW
- 2014: 303 LPW

High Volume Production
- 2008: 3 yrs
- 2010: XP-G
- 2012: XM-L
- 2013: MK-R
- 2014: XP-L

Copyright © 2015, Cree Inc.
XLAMP PLATFORM

SC5 Platform
*Lowers system cost

SC3 and HD Platforms

2015

XP-G2

2012

XM-L

2009

Better Performance

Lower Cost

Lumens

Cost*

Copyright © 2015, Cree Inc.
Lighting Design Philosophy: LEDs or Applications First?

“LEDs then Application”

“Application then LEDs”
SC5 Technology Platform

Extreme High Power LEDs: XHP50 & XHP70

<table>
<thead>
<tr>
<th>XLamp XHP50</th>
<th>XLamp XHP70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footprint: 5.0 x 5.0 mm</td>
<td>Footprint: 7.0 x 7.0 mm</td>
</tr>
<tr>
<td>Max Power: 20W</td>
<td>Max Power: 30W</td>
</tr>
</tbody>
</table>

XHP Redefines High Power Lumen Density & Reliability to Lower System Cost

- **Double the lumens**: fewer LEDs & optics required
- **Radical system size reduction**: smaller chassis/heat sink
- **Improved long-term reliability**: reduce heat sink, not lifetime

<table>
<thead>
<tr>
<th>Lighting Apps</th>
<th>Non-Directional</th>
<th>Directional</th>
<th>Downlight</th>
<th>Linear</th>
<th>Outdoor/High Bay</th>
<th>Portable</th>
</tr>
</thead>
</table>
System Value of Lumen Density & Reliability

100W PAR38 Design Example
900 lumens, 40° beam, 1900 cd

- Smaller PCB: Fewer LEDs
- Smaller optic: Best LED lumen density
- Fewer LEDs: Better lumen maintenance
- Smaller heat sink: Better reliability at high temperature

Copyright © 2015, Cree Inc.
SC5 Value: Cree Lighting High Bay Luminaire

26,000 lm
12 CXA2530 LEDs
238 W
110 LPW
Tsp = 105 C

42,500 lm
54 XHP50 LEDs
404 W
105 LPW
Tsp = 125 C

46,200 lm
72 XHP50 LEDs
398 W
116 LPW
Tsp = 125 C
Outline

- Fundamental Approach
- LED Milestones
- LED Chips and Components
- The light bulb: Edison to LEDs
- LED General Lighting
- End Results: Jobs!
…A Brief History of “Modern” Lighting

- **1783** Argand Oil Lamp
- **1810** Gas Lamp
- **1826** Limelight
- **1879** Edison Light Bulb
- **1938** Fluorescent Tube

- Current lighting technology is ~ 100 years old!
- It’s time for some innovation, ie LEDs!!

Copyright © 2015, Cree Inc.
Regarding Edison’s competition
- “gas lighting is (1) almost entirely heat and only incidentally a little light, (2) not to mention evil and a vile poison”

- Incandescents meet criteria 1
- Fluorescents meet criteria 2

The solution to both is LEDs!
Consumer - Some A19 Bulbs non-Cree

3M A19 Lamp
- 800 lm, 3000K, omni-directional
- Retail: $19 at Walmart
- Assembled in USA (Minnesota)

Best Buy Insignia A19 Lamp
- 450/800 lm, 3000K, omni-directional
- Retail: $14/$17
- Weight: 100g

GE A19 Lamp
- 450/800 lm, 3000K, omni-directional
- Retail: $15/$20
- Weight: 100g

Philips A19 Lamp
- 450/800/1100/1600 lm
- 2700 K, omni-directional
- Retail: $12/15/20/24

Target bulb segment
- 40W/60W/75W/100W+
 Omni-directional
- ANSI form factor bulb
- Light weight (~110g)
- Low Cost
Cree A19 LED Bulb

- Non-weird Shape
- Non-weird Color
- Pays for itself

$9.97 $7.97
CREE THE BIGGEST THING SINCE THE LIGHT BULB.™
Exclusively at The Home Depot

Backed by our 10-year warranty.
Built to last and last.

Up to 25,000 hours of beautiful energy efficient light.

Uses up to 85% less energy.

Designed and built in the USA.

NEW LOWER PRICE

$56.82
Was $77.82 Save 27%
Cree 60W Equivalent Soft White (2700K) A19 Dimmable LED Light Bulb (6-Pack)
Model # BA19-08027OMF-12DE26-2U100

$69.88
Cree 65W Equivalent Soft White (2700K) BR30 Dimmable LED Flood Light Bulb (4-Pack)
Model # BBR30-06527FLF-12DE26-1U100

$21.97
Cree 30/60/100W Equivalent Soft White (2700K) 3-Way A21 LED Light Bulb
Model # BA21-16027OMF-12WE26-1U100

$71.91
Cree 90W Equivalent Bright White (3000K) PAR38 47 Degree Flood Dimmable LED Light Bulb (3-Pack)
Model # BPAR38-1503047T-12DE26-1U100
Outline

- Fundamental Approach
- LED Milestones
- LED Chips and Components
- The light bulb: Edison to LEDs
- LED General Lighting
- End Results: Jobs!
Figures of Merit For General Lighting

- **Correlated Color Temperature (CCT)**
 - The “shade” of white from yellowish (warm) to bluish (cool)

- **Color Rendering Index (CRI)**
 - How “true” object colors appear under “white” illumination
 - By definition CRI=100 for incandescent illumination

- **Vividness**
 - Color saturation relative to the blackbody

- **Lumens**
 - Brightness of a light source

- **Lumens/W**
 - How bright the light is divided by the power to create it i.e., efficiency of the light source
• **Correlated Color Temperature (CCT)**
 - The “shade” of white from yellowish (warm) to bluish (cool)

• **Color Rendering Index (CRI)**
 - How “true” object colors appear under “white” illumination
 - By definition CRI=100 for incandescient illumination

• **Vividness**
 - Color saturation relative to the blackbody

• **Lumens**
 - Brightness of a light source

• **Lumens/W**
 - How bright the light is divided by the power to create it i.e., efficiency of the light source
Common Warm and Cool Sources

Color Temperature

Color Temperature Scale (°K)

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

warm

- Halogen 3000°K
- Standard Incandescent 2700°K
- Neutral White 3500°K

cool

- Cool White Fluorescent 4200°K
- Daylight Metal Halide 5500°K

LED Approach

440-460 nm blue

+ or +

Nitride-based red phosphor + Red LED

Yttrium or lutetium aluminum garnet Yellow-green down conversion

Cree TrueWhite™
Figures of Merit For Lighting

- **Correlated Color Temperature (CCT)**
 - The “shade” of white from yellowish (warm) to bluish (cool)

- **Color Rendering Index (CRI)**
 - How “true” object colors appear under “white” illumination
 - By definition CRI=100 for incandescent illumination

- **Vividness**
 - Color saturation relative to the blackbody

- **Lumens**
 - Brightness of a light source

- **Lumens/W**
 - How bright the light is divided by the power to create it i.e., efficiency of the light source
CRI Referenced to 14 Major Color Palettes
Some Stuff Looks Good; Some Stuff, Not-so-much…

CRI = 85 CRI = 78

Na Vapor Lamp

CRI = 65 CRI = 22
Why Your Customer Cares about #9

CFL
$R_9 = 0$

[It’s What’s For Dinner]

Cree TrueWhite™
$R_9 = 90$
Figures of Merit For Lighting

- **Correlated Color Temperature (CCT)**
 - The “shade” of white from yellowish (warm) to bluish (cool)

- **Color Rendering Index (CRI)**
 - How “true” object colors appear under “white” illumination
 - By definition CRI=100 for incandescent illumination

- **Vividness**
 - Color saturation relative to the blackbody

- **Lumens**
 - Brightness of a light source

- **Lumens/W**
 - How bright the light is divided by the power to create it i.e., efficiency of the light source
“Color Quality” has been measured by CRI: “Fidelity”
- color *resemblance* to the blackbody

But color quality has a 2nd attribute: “Vividness”
- color *saturation* relative to the blackbody

Right-hand side is clearly better: but is this fidelity, or is it saturation?

In the past fidelity and vividness both increased with CRI, but SSL technology is changing

New opportunity: more vivid light sources give customers a choice
Higher Vividness is Sometimes Preferred

NIST studies (Yoshi Ohno)
- For colorful objects, people prefer more vivid light sources than CRI predicts

CRI 94

This looks better (for most people)

CRI 78

Yoshi Ohno, “Latest Research and Standardization on Chromaticity & Color Quality of LED lighting,” SSL China, Nov 2014
Color Quality Beyond CRI is Here Today

- True White® has higher vividness AND high fidelity:
 - >120 lm/W Product
 - 200 LPW R&D

- Technology can be optimized still further
More Can Be Done

- Increase Vividness via narrow spectral components
 - Other LED colors
 - New Phosphors

- Need to open up our color quality definitions to capture higher vividness than in the past
 - Ex: 90 CRI rules could hold back color quality as vividness increases
 - Current NIST and IES Color Quality Task Force efforts are a good start
Figures of Merit For Lighting

- Correlated Color Temperature (CCT)
 - The “shade” of white from yellowish (warm) to bluish (cool)

- Color Rendering Index (CRI)
 - How “true” object colors appear under “white” illumination
 - By definition CRI=100 for incandescent illumination

- Vividness
 - Color saturation relative to the blackbody

- **Lumens**
 - Brightness of a light source

- **Lumens/W**
 - How bright the light is divided by the power to create it ie., efficiency of the light source
Real LED Levels of Performance (Current)

Just like traditional lamps, LEDs have losses beyond the boiler plate data sheet specs...

...but the source of losses are somewhat different:

- Thermal (also a source of Lumen Depreciation)
- Optical (lenses, etc.)
- Driver (electrical losses in power conversion and dimming)

For blue + phos

<table>
<thead>
<tr>
<th></th>
<th>6000K</th>
<th>4100K</th>
<th>3500K</th>
<th>2700K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Sheet LPW</td>
<td>200</td>
<td>180</td>
<td>160</td>
<td>140</td>
</tr>
<tr>
<td>Typical Thermal Loss</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Typical Optical Loss</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Typical Driver Loss</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Achievable LPW</td>
<td>138</td>
<td>124</td>
<td>110</td>
<td>96</td>
</tr>
<tr>
<td>CRI</td>
<td>~75</td>
<td>~80</td>
<td>~82</td>
<td>~83</td>
</tr>
</tbody>
</table>

* Typical with average/good design practices

Note: Does not include Cree’s BSY + Red Technology
Projected LED Levels of Performance (2017)

Up 25% over next 3 years

<table>
<thead>
<tr>
<th></th>
<th>6000K</th>
<th>4100K</th>
<th>3500K</th>
<th>2700K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Sheet LPW</td>
<td>250</td>
<td>225</td>
<td>200</td>
<td>175</td>
</tr>
<tr>
<td>Typical Thermal Loss</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Typical Optical Loss</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Typical Driver Loss</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Achievable LPW</td>
<td>208</td>
<td>187</td>
<td>166</td>
<td>145</td>
</tr>
<tr>
<td>CRI</td>
<td>~75</td>
<td>~80</td>
<td>~82</td>
<td>~83</td>
</tr>
</tbody>
</table>

* State-of-the-art

- LEDs will be the most efficient mainstream light source available
 - >185 delivered LPW roadway light possible (4100K)
 - Indoor fixtures >145 LPW (wall-plug)
Cree’s world-class LED luminaires offer proven performance, style and affordability.
Cree TrueWhite® Technology Advantage

Color Mixing & Tuning

Patented mixing of LEDs delivers an improved visual environment using significantly less energy than traditional lighting technologies.
BEFORE – 6-LAMP T8

Quantity: 34
Total Watts: 6,120

AFTER – CS18™ LED

Quantity: 38
Total watts: 2,660

Payback Just Over
8 Months

Total Lifetime Savings:
$28,155 (50K Hrs)

Improved Vertical Illumination
and Color Quality

56% LESS
2 x 4 Troffers

Courtyard by Marriott
Louisville, KY

Balanced illumination from the CR troffer provides:

• Improved lighting quality: no harsh contrast; soft shadows

• Creating a mix of light to walls, partitions, vertical and horizontal work surfaces can increase the perceived light level and improve visual comfort!
ZR HE – 150 LPW 90 CRI 4000 Lumen Fixture !!!

- Cree TrueWhite® Technology
- Delivered Light Output: 3200, 4000 lumens
- Input Power: 21 to 44 watts
- LPW: 90-150
- CRI: 90
- CCT: 3500K, 4000K
- Input Voltage: 120-277 VAC
- Lifetime: Designed to last up to 75,000 hours (standard) and 100,000 hours (HE)
- 10-year limited warranty
- Mounting: Recessed

Applications
- Petroleum & Convenience Lighting
- Airport Lighting
- Auto Dealership Lighting
- Corporate Campus Lighting
- Education Facilities Lighting
- Government Facilities Lighting
- Healthcare Facilities Lighting
- Municipal Lighting
- Recreation & Public Venue Lighting
- Restaurant & Hotel Lighting
- Retail & Grocery Lighting
BEFORE - HID
19.1kW

AFTER - LED
6.5kW

Edgewater Marketplace - Edgewater, CO

Cree Edge™ Area Square

Copyright © 2015, Cree Inc.
$225,000 in Annual Energy and Maintenance Savings!
(1,100 luminaires)

BEFORE - HPS
400W

AFTER - LED
150 & 200W
LEDway® and XSP Street Light

Los Angeles, CA (2008-2012)

BEFORE - HPS

AFTER - LED

$10,000,000 in Annual Energy and Maintenance Savings!

63% LESS

Copyright © 2015, Cree Inc.
Traditional Post-Top LED Upgrade Kit

State Street
Racine, WI

LED Upgrade Kits for:
• Holophane®
 – Esplanade® Teardrop
 – Granville Acorn
 – Washington Post-Lite® Acorn
• King® Luminaire
 Washington Acorn
• Lumec® New
 Westminster Globe
Cree Edge™ Surface Mount Canopy

Richlands Station
Queensland, Aus.

- Modern look
- Excellent vertical light for pedestrians
- One-for-one replacement is a popular option
- Wide range of optics and lumen outputs
304 Series™ Parking Structure

Advocate Brommen
Normal, IL

Typical installation using no controls
• 2.4 year payback
• $405K lifetime savings*

Typical installation using occupancy sensors
• 2.3 year payback
• $516K lifetime savings*
Cree CPY250™ Surface Mount Canopy

Raleigh, NC
Super Bowl 2015

Ephesus Lighting
Powered by Cree® LEDs
Outline

• Fundamental Approach

• LED Milestones

• LED Chips and Components

• The light bulb: Edison to LEDs

• LED General Lighting

• End Results: Jobs!
Cree Company Overview

GLOBAL SCALE

- 28 global locations
- 7,100 employees

CREE FACTS

Fiscal 2014 Revenues $1.6B
June 2014 Cash & Investments >$1.2B
Long-term Debt 0
A Global Company

R&D
• Durham, NC
• Research Triangle, NC
• Racine, WI
• Santa Barbara, CA
• Florence, Italy
• Hong Kong

Manufacturing & Distribution
• North Carolina, USA
• Wisconsin, USA
• Italy
• China
• Canada
• UAE
• Australia

Sales
• USA
• Canada
• Mexico
• Germany
• France
• Italy
• Turkey
• UK
• China
• Singapore
• Japan
• Taiwan
• South Korea
• Russia
• UAE
• India
• Africa
• Chile
• Guatemala
• Australia
• New Zealand
• Panama
• Columbia
• Brazil

Copyright © 2015, Cree Inc.
Track Record of Growth

Revenue ($ Millions)

CAGR > 20%

Geographic Mix FY14

- North America: 49%
- China: 27%
- Europe: 9%
- Asia (ex. China): 10%
- ROW: 5%

Copyright © 2015, Cree Inc.
Cree and SSL are Making a Difference

• Leader in Creating and Growing an LED Lighting Industry

• Thousands of good-pay jobs created

• Thank you DOE for your support along the way