Advancing Phosphor Science: Targeting high-efficiency phosphors *via* informatics

Jakoah Brgoch, Ph.D. Department of Chemistry University of Houston

Email: jbrgoch@uh.edu

Phosphor converted solid-state white lighting

LED + yellow phosphor

Emission characteristics

White LEDs use a blue (450 nm) or near-UV (405 nm) that is partially converted by a phosphor.

The combination of the LED emission and phosphor emission appear as white light.

<u>LED + Phosphor</u> Radiation from LED (absorbed by phosphor)

Radiation from phosphor down-conversion (emission from phosphor)

George, Denault, and Seshadri Annu. Rev. Mater. Sci, 2013, 43, 2.1:2.21

Mechanism of phosphor emission in white LEDs

Phosphors consist of two components: activator ion (luminescent center) and a host lattice

Emitted light can be tuned to desired wavelength by changing the CFS of the activator ion

Phosphors consist of two components: activator ion (luminescent center) and a host lattice

Emitted light can be tuned to desired wavelength by changing the CFS of the activator ion

The photophysics occurs in the band gap

Need wide band-gap materials that can 0 accommodate the RE

Cerium-substituted YAG: The prototypical phosphor

Cerium-substituted yttrium aluminum garnet (YAG:Ce³⁺) is a widely used phosphor because of its high photoluminescent quantum yield (PLQY= 80-95%)

Absorbs blue and then down converts to a yellow emission

The need for new phosphors

A better approach to develop new, efficient inorganic phosphors

Develop phosphors that have enhanced thermal quenching properties for high-power LED and laser based lighting

A more efficient method to identify new phosphor hosts

BaMgAl₁₀O₁₇:Eu²⁺

Sr₂Si₅N₈:Eu²⁺

Yellow Emission 90 % Efficient (*Chem. Mater.* **2009** *21*, 316)

Blue Emission 92 % Efficient (*Chem. Mater.* **2002** *14*, 5045) Orange/Red Emission 80% Efficient (Appl. Phys. Lett. **2011** *99*, 241106)

Highly rigid structures improve photoluminescence efficiency This is well known in molecular chemistry ...

How do we measure structural rigidity in a solid?

$$\Theta_D = \frac{\hbar}{k_{\rm B}} [6\pi^2 V^{1/2} n]^{1/3} \sqrt{\frac{B_H}{M}} f(\sigma)$$
$$f(\sigma) = \left\{ 3 \left[2 \left(\frac{2}{3} \cdot \frac{1+\sigma}{1-2\sigma} \right)^{\frac{3}{2}} + \left(\frac{1}{3} \cdot \frac{1+\sigma}{1-\sigma} \right)^{\frac{3}{2}} \right]^{-1} \right\}^{\frac{1}{3}}$$

- V = unit cell volume n = number of atoms B_H = bulk modulus M = molar mass σ = Poisson's ratio
- $f(\sigma)$ = function of Poisson's ratio

B_H and Poisson's ratio can be calculated from stress-strain relationships determined by firstprinciples (VASP)

Examples of phosphor hosts screened

Quantum yield of Ce³⁺ phosphors follow Debye temperature

Quantum yield (Φ) increases with Debye temperature

Aluminates tend to have the highest Debye temperature and largest quantum yield of the compounds examined so far

Phosphor hosts need to have a wide band-gap for the RE orbitals

A small gap can lead to emission quenching due to thermal population of the conduction band

To use this approach as a screening tool compound must have a wide band gap The band gap is accurately calculated using hybrid functional calculations (HSE06)

Brgoch, DenBaars, and Seshadri J. Phys. Chem. C 2013, 117, 17955-17959.

Sorting diagram for efficient (Ce³⁺) phosphor hosts

Plotting Debye temperature against band-gap can be used to identify compounds that have the optimal properties

• The most efficient materials fall in the top-right corner

Screening for efficient phosphor hosts

Searching structural through crystal structure databases, *e.g.*, the ICSD, indicates the potential targets for synthetic consideration

Learning from large data-sets – Compositional information

Examining metadata provides an indication of where to focus the future search
Oxides are still a great place to focus – in particular borates

Learning from large data-sets – Coordination environments

Examining metadata provides an indication of where to focus the future search

- Oxides are still a great place to focus in particular borates
- Higher coordination environments appear to be favorable in efficient phosphors

Advancing Phosphor Science: Targeting high-efficiency phosphors *via* informatics

Jakoah Brgoch, Ph.D. Department of Chemistry University of Houston

Email: jbrgoch@uh.edu