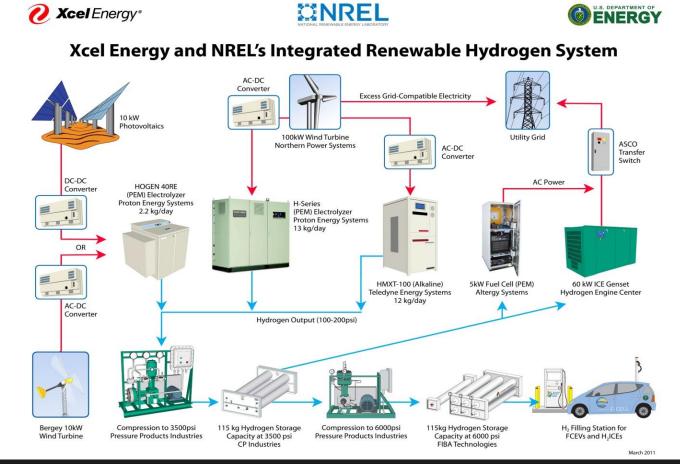


H₂ Grid Integration: Tools and Analyses


Hydrogen Energy Storage Workshop

Josh Eichman, PhD

5/14/2014

Wind to Hydrogen Project

- Xcel Energy, DOE and NREL collaboration
- Can explore the role of H₂ for...
- Renewable Integration
- Responsive loads (demand response)
- EnergyStorage
- Multiple outputs streams
 - Electricity
 - Transportation fuel
 - Industrial gas

Electricity market requirements

Important operational characteristics

- Power capacity
- Energy capacity
- Response time
- Ramp-rate
- Min. turndown
- Startup time
- Shutdown time

How much can you provide in response?

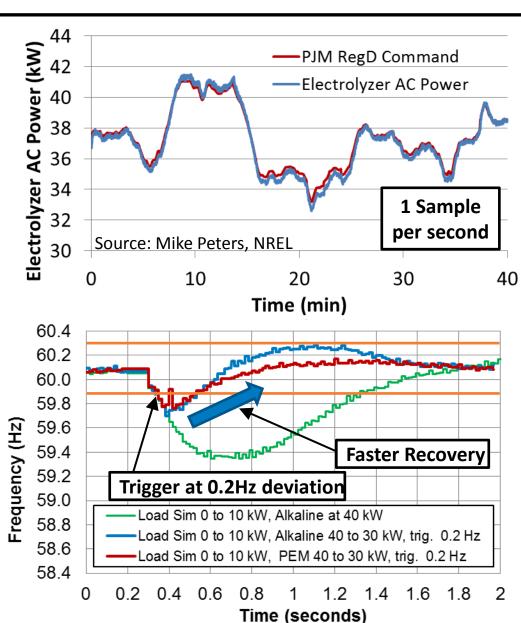
For how long can you respond (duration)?

How quickly can you begin responding?

How fast can you change your response?

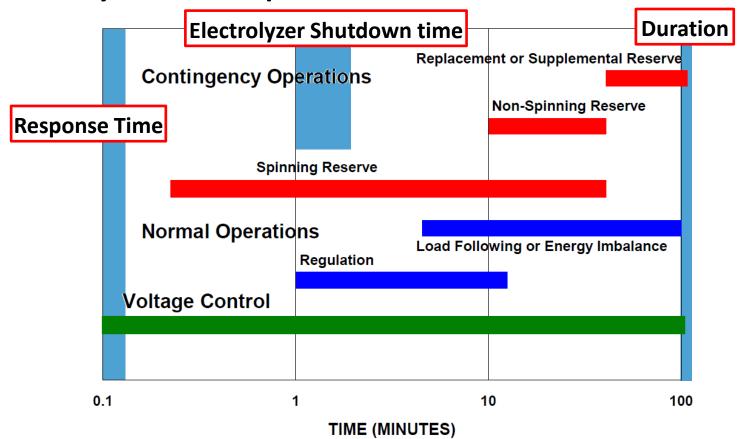
What is your lowest operating point?

How long does it take to start up?


How long does it take to shutdown?

Electrolyzer Regulation Tests

- Tested PJM regulation A and D signals
- Tested frequency response using a microgrid


Source: Harrison K., Mann M., Terlip D., and Peters M., NREL/FS-5600-54658

Electrolyzers can respond to rapidly varying input signal

Electrolyzer Testing Results vs. Requirements

Ancillary Service Requirements

Source: Kirby, B.J. 2006. Demand Response for Power Systems Reliability: FAQ. ORNL

Source: Eichman, J.D.; Harrison, K.; Peters, M. (Forthcoming). Novel Electrolyzer Applications. NREL/TP-5400-61758

Electrolyzers can respond fast enough and for sufficient duration to "technically" participate in electricity markets

Capacity req. for grid services is falling

Minimum capacity requirements to bid into market

- 50 MW for E.ON as of 2006 [2]
- 30 MW for EnBW, RWE, and VET for minute reserve power in Germany as of 2006 [2]
- 10 MW for ISO-NE and the primary and secondary control markets in Germany [2, 4]
- 1 MW for NYISO, PJM and CAISO [3, 4]
- $_{\circ}~~$ $100~\mathrm{kW}$ load reduction in the case of NYISO curtailment program [1]

Capacity can often be aggregated

- 1. NYISO Auxilary Market Operations (2013). Emergency Demand Response Program Manual, New York Independent System Operator, http://www.nyiso.com/public/webdocs/markets operations/documents/Manuals and Guides/Manuals/Operations/edrp mnl.pdf.
- 2. Riedel, S. and H. Weigt Electricity Markets Working Papers: German Electricity Reserve Markets, Dresden University of Technology and Energy Economics and Public Sector Management, WP-EM-20, http://hannesweigt.de/paper/wp em 20 riedel weigt Germany reserve markets.pdf.
- 3. Intelliegent Energy Europe (2008). Market Access for Smaller Size Intelligent Electricity Generation (MASSIG): Market potentials, trends and marketing options for Distributed Generation in Europe, Energy Economics Group, Fraunhofer ISE, Technical University of Lodz, The University of Manchester and EMD International A/S, https://www.iee-massig.eu/papers_public/MASSIG_Deliverable2.1_Market_Potentials_and_Trends.pdf.
- 4. Cutter, E., L. Alagappan and S. Price (2009). Impacts of Market Rules on Energy Sorage Economics, Energy and Environmental Economics, http://www.usaee.org/usaee2009/submissions/OnlineProceedings/8025-Energy%20Storage Paper%20E3.pdf

Grid capacity requirements are approaching manufacturer scale-up targets

Modeling Approach

Can perform time-resolved co-optimization of energy and ancillary service products very quickly

Historical or Modelled

- Energy Prices
- Reserve Prices
- H₂ Prices
- Operational parameters

Price-Taker

Profit based on operation (arbitrage, AS, H₂ sale, etc.)

Assumes

- 1.) Sufficient capacity is available in all markets
- 2.) Objects don't impact market outcome (i.e., small compared to market size)

Modeling Approach

- Transmission Network (electric and gas)
- Generator properties (coal, gas, nuclear, renewable, etc.)
- Load requirements
- Reliability requirements
- Other System Constraints

Grid Simulation Model

- Generator operation (starts, fuel, costs)
- Fuel use and cost
- Emissions
- Transmission operation (flow, congestion)
- Imports & Exports
- Load served
- Energy Prices
- Reserve Prices

Legend
Power Plants

BIOMASS & NAW

COAL NICLEAR

DIDESTER GAS ON OLICAS

GENERAL HORDE WIND

LANDRILL AS

HODDE WIND

LANDRILL AS

NOTES AND WIND

LANDRILL AS

California Power Plants and Transmission Lines (energyalmanac.ca.gov/)

Perform temporal and spatial co-optimization of energy and ancillary service products (days or weeks of runtime)

Modeling Approach

- Transmission Network (electric and gas)
- Generator properties (coal, gas, nuclear, renewable, etc.)
- Load requirements
- Reliability requirements
- Other System Constraints

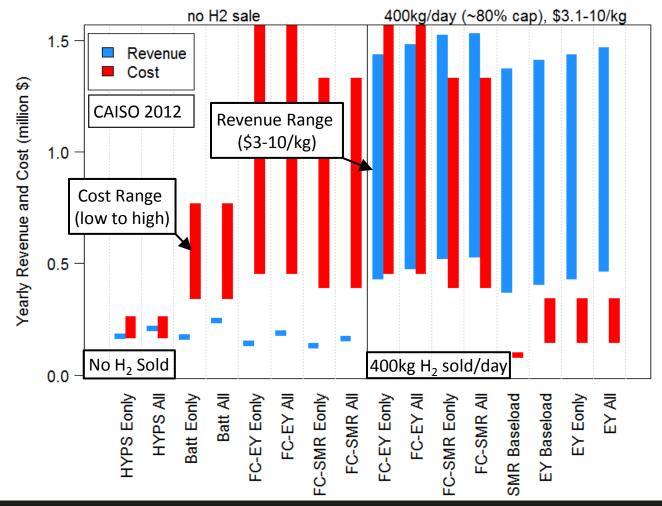
Grid Simulation Model

- Energy Prices
- Reserve Prices
- H₂ Prices
- Operational parameters

- Generator operation (starts, fuel, costs)
- Fuel use and cost
- Emissions
- Transmission operation (flow, congestion)
- Imports & Exports
- Load served

Models can be integrated (e.g., effect of renewables, changes to gas system, market design)

Price-Taker

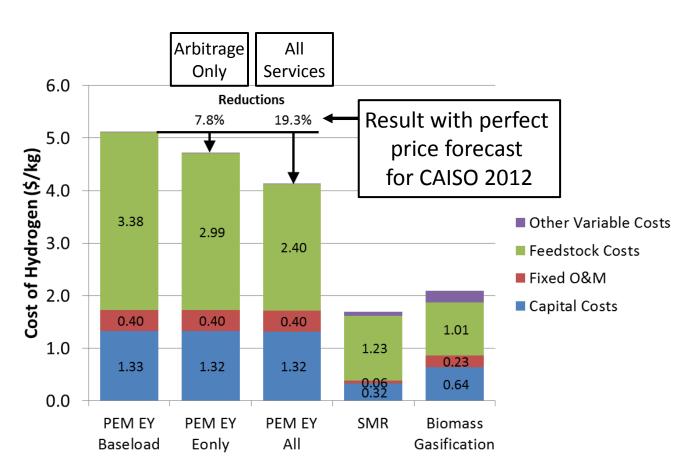

Profit based on operation (arbitrage, AS, H₂ sale, etc.)

Price-Taker Results with historical prices

Selling H₂ increases competitiveness

Providing ancillary services > Energy only > Baseload

Comparison of yearly revenue and cost

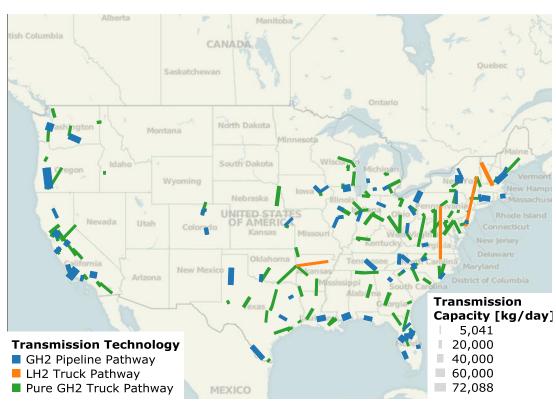

Name	Technology
HYPS	Pumped Hydro
Batt	Battery
FC	Fuel Cell
EY	Electrolyzer
SMR	Steam Methane Reformer

Name	Services
All	All Ancillary Services
Eonly	Energy Arbitrage only
Baseload	"Flat" operation

Comparison to H2A

Integration with the grid can lower feedstock costs and increase revenue

H2A Current Central Hydrogen Production Scenarios



Name	Technology
FC	Fuel Cell
EY	Electrolyzer
SMR	Steam Methane Reformer

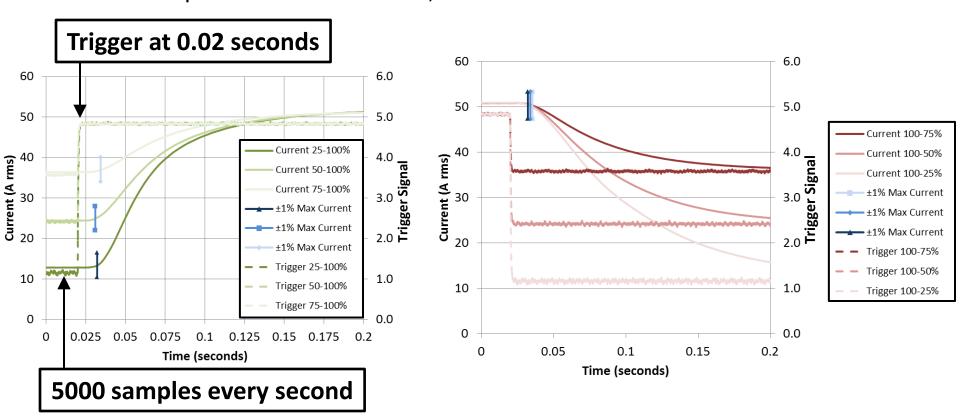
Name	Services
All	All Ancillary Services
Eonly	Energy Arbitrage only
Baseload	"Flat" operation

Transportation infrastructure modeling

- Scenario Evaluation, Regionalization and Analysis (SERA)
 Model
 - Integrates various models and datasets
 - H2A
 - HDSAM
 - ADOPT
 - MA3T
 - VISION
 - IRS data
 - Census data
 - Polk data
 - Vehicle data
 - Locates least cost geographic infrastructure options

Important to explore interactions between electric, gas and transportation sectors

Questions?


Backup Slides

Electrolyzer Response Time

Power set-point was changed (PEM unit shown below)

o Ramp Up: 25%, 50%, and 75% \rightarrow 100%

 $_{\odot}$ Ramp Down: 100% \rightarrow 75%, 50% and 25%

Electrolyzers can rapidly change their load point in response to grid needs

Approach – Assumptions

Properties	Pumped	Pb Acid	Stationary	Electrolyzer	Steam Methane
	Hydro	Battery	Fuel Cell		Reformer
Rated Power Capacity (MW)	1.0	1.0	1.0	1.0	500 kg/day
Energy Capacity (hours)	8	4	8	8	8
Capital Cost (\$/kW Low to High)	1500¹ - 2347²	2000¹ - 4600¹	1500³ - 5918²	430³ - 2121 ⁶	427 – 569 \$/kg/day ⁴
Fixed O&M (\$/kW-year Low to High)	8¹ - 14.27²	25¹ - 50¹	350 ²	42 ⁴	4.07 – 4.50 % of Capital ⁴
H ₂ Storage Cost (\$/kg)	-	-	623 ⁵	623 ⁵	623 ⁵
Installation cost multiplier	1.24	1.24	1.24	1.24	1.924
Lifetime (years)	30	12 ¹ (4400hrs)	20	204	204
Interest rate on debt	7%	7%	7%	7%	7%
Efficiency	80% AC/AC ¹	90% AC/AC ¹	40% LHV	70% LHV	0.156 MMBTU/kg ⁴ 0.6 kWh/kg ⁴
Minimum Part-load	30%7	1%	10%	10%	100%

Source: ¹EPRI 2010, Electricity Energy Storage Technology Options, 1020676

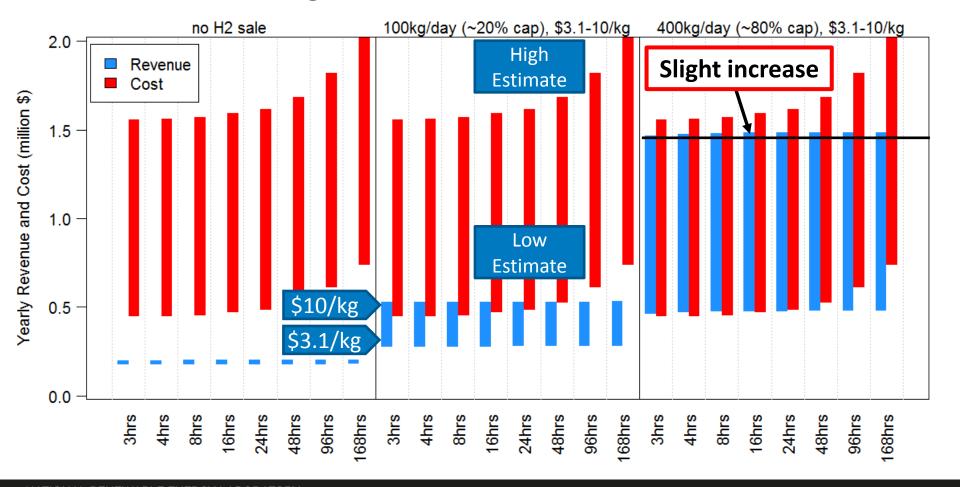
²EIA 2012, Annual Energy Outlook

³DOE 2011, DOE Hydrogen and Fuel Cells Program Plan

⁴H2A Model version 3.0

⁵NREL 2009, NREL/TP-560-46719 (only purchase once if using FC&EY system)

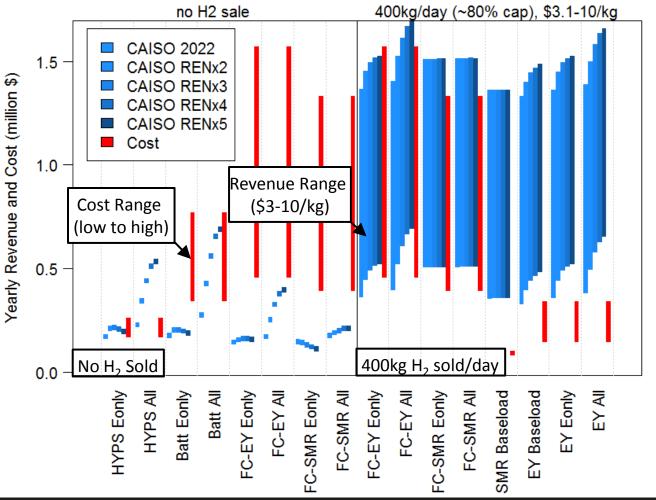
⁶NREL 2008, NREL/TP-550-44103


⁷Levine, Jonah 2003, Michigan Technological University (MS Thesis)

Results

More storage is not necessarily more competitive in current energy and AS markets

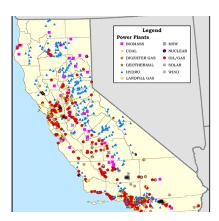
Capacity Sensitivity


FC-EY storage device

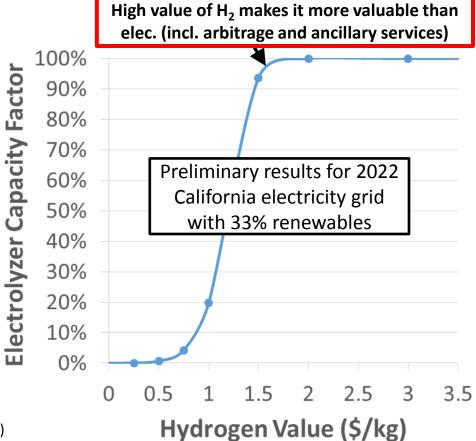
Grid Simulation Model Coupled with Price-Taker

More renewables increases the value for devices participating in ancillary service markets

Effect of renewables on revenue and cost


Name	Technology
HYPS	Pumped Hydro
Batt	Battery
FC	Fuel Cell
EY	Electrolyzer
SMR	Steam Methane Reformer

Name	Services
All	All Ancillary Services
Eonly	Energy Arbitrage only
Baseload	"Flat" operation


Results

 Integrating H₂ devices into a large-scale grid simulation tool shows how the grid will be affected

- Emissions
- Production cost
- Generation mixture
- Prices

California Power Plants and Transmission Lines (energyalmanac.ca.gov/)

Conclusions

- 1. Sell H₂: FC-EY systems providing strictly storage are less competitive than systems that sell H₂
- 2. Revenue w/ ancillary service > energy only > baseload
- 3. Electrolyzers operating as a "demand response" devices have very favorable prospects
- 4. More storage is not necessarily more competitive in current energy and ancillary service markets (but may add value in capacity market)
- 5. More renewables increases the competitiveness for electrical hydrogen equipment (i.e., EY and FC... not SMR)
- 6. Hydrogen technologies show interesting results when integrated into large-scale grid simulation models