Resilience Metrics for Energy Systems

Henry H. Willis

April 29, 2014
Resilience is a complex concept
There are many ways to define resilience

- For today, it is not important to debate
 - How terms relate
 - Where terms overlap

- Most important to understand
 - What system is being measured
 - What properties are of interest
 - What audiences seek metrics
 - What decisions are made using metrics
Guidelines for measuring resilience

- Resilience describes the state of service from a system in response to a disruption.
- Metrics should be selected based on who is measuring resilience and why.
Guidelines for measuring resilience

• Resilience describes the state of service from a system in response to a disruption

• Metrics should be selected based on who is measuring resilience and why
Resilience describes the state of service from a system in response to a disruption.
Resilience depends on...

- **Type of service**
 - Line workers to a response
 - Power to a community
 - Transportation for commuters
 - Income to a region

- **Type and extent of disruption**
 - Pandemics, hurricane, floods, earthquake, geomagnetic storms, cyber attacks, events now and in the future

- **System design, operation, and response**
 - Redundancy
 - Maintenance
 - Response
Different systems will have different resilience to the same disruption.
Different responses will lead to different resilience at different costs.
Resilience of a system also depends on the time scale considered.
Guidelines for measuring resilience

• Resilience describes the state of service from a system in response to a disruption

• Best metrics depend on who is measuring resilience and why
Resilience metrics are used for many purposes and at many levels.

What is available?

Examples
• Budgets
• Equipment
• # of spare parts
• # of generators
• # of line workers
Resilience metrics are used for many purposes and at many levels

Inputs

What is available?

Capacities

How are inputs organized?

Examples

• Response teams
• Plans
• Aid agreements
• Smart-grid tech
Resilience metrics are used for many purposes and at many levels

- **Inputs**
 - What is available?

- **Capacities**
 - How are inputs organized?

- **Capabilities**
 - What tasks can be performed?

Examples
- Outage detection
- Line repair
- Backup delivery
- Outage restoration
Resilience metrics are used for many purposes and at many levels

- **Inputs**
 - What is available?

- **Capacities**
 - How are inputs organized?

- **Capabilities**
 - What tasks can be performed?

- **Performance**
 - What is produced?

Examples
- Energy delivery
- Efficiency
- Reliability

- Hardness
- Robustness
- Sustainability
Resilience metrics are used for many purposes and at many levels

- **Inputs**
 - What is available?

- **Capacities**
 - How are inputs organized?

- **Capabilities**
 - What tasks can be performed?

- **Performance**
 - What is produced?

- **Outcomes**
 - What is achieved?

Examples
- Economic activity
- Costs and damage
- Human welfare
Metrics support both strategic and operational decisionmaking

Operational Perspective

- **Inputs**: What is available?
- **Capacities**: How are inputs organized?
- **Capabilities**: What tasks can be performed?
- **Performance**: What is produced?
- **Outcomes**: What is achieved?

Strategy Perspective
There is not a single set of metrics for all purposes

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Capacities</th>
<th>Capabilities</th>
<th>Performance</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>Examples</td>
<td>Examples</td>
<td>Examples</td>
<td>Examples</td>
</tr>
<tr>
<td>• Budgets</td>
<td>• Response teams</td>
<td>• Outage detection</td>
<td>• Energy delivery</td>
<td>• Economic activity</td>
</tr>
<tr>
<td>• Equipment</td>
<td>• Plans</td>
<td>• Line repair</td>
<td>• Efficiency</td>
<td>• Costs and damage</td>
</tr>
<tr>
<td>• # of spare parts</td>
<td>• Aid agreements</td>
<td>• Backup delivery</td>
<td>• Reliability</td>
<td>• Human welfare</td>
</tr>
<tr>
<td>• # of generators</td>
<td>• Smart-grid tech</td>
<td>• Outage restoration</td>
<td>• Hardness</td>
<td></td>
</tr>
<tr>
<td>• # of line workers</td>
<td></td>
<td></td>
<td>• Robustness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Sustainability</td>
<td></td>
</tr>
</tbody>
</table>

Selecting metrics requires balancing validity, reliability, and practicality in as few metrics as possible
Summary

• Resilience can be evaluated for different systems, disruptions, responses, and time-scales

• Metrics can describe inputs, capacities, capabilities, performance, or outcomes

• Metrics must be selected for a purpose

• Selecting metrics requires considering conciseness, comprehensiveness, validity, reliability and practicality
Questions for discussion

• What resilience outcomes are stakeholders most concerned about?

• What are stakeholders’ needs for resilience metrics?

• What analysis are you doing that must take resilience into account?
 – In what context (risk assessment, investment analysis, etc.)
 – How are you doing that?

• Are existing metrics adequate?

• What resilience metrics are currently codified in Federal or state regulations, and are they adequate?

• What specific metrics are most useful?