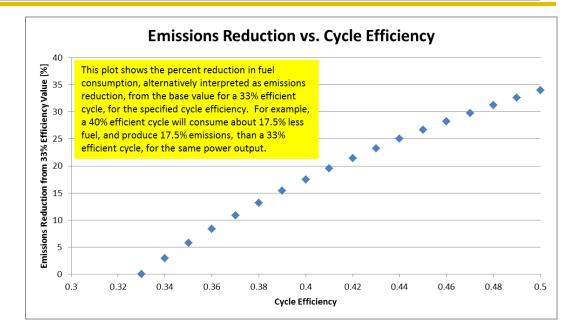

Supercritical CO₂ Brayton Cycle Development

Gary E. Rochau, Technical Area Lead Advanced SMR Energy Conversion

Supercritical CO₂ (sCO₂) Brayton Cycle

- sCO₂ Brayton Cycle remains in a single-phase throughout the process and does not require added energy to convert from liquid to gas phases or condense gas to liquid like traditional the Rankine Steam Cycle, leading to greater energy conversion efficiency
- At operating temperatures, sCO₂ has high enthalpies (energy/mass) and physical densities greater than steam which minimizes the volume of working fluid and system size required for an equivalent energy conversion reduces capital cost

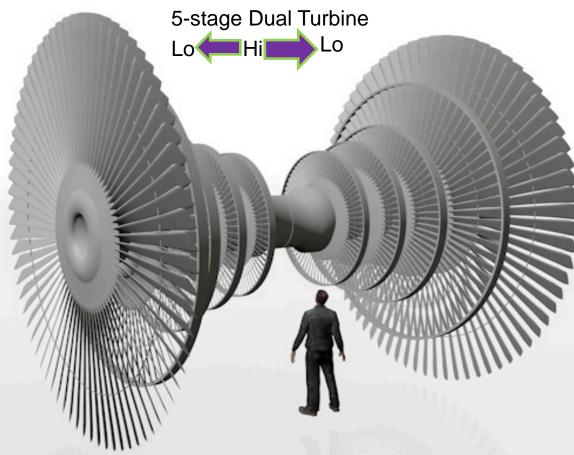
sCO₂ Benefits & Challenges


Nuclear Energy

Benefits

- Economic advantages
 - Smaller size relative to steam system – reduced capital cost
 - Increased efficiency increased electricity production for same thermal input – lower cost of electricity production (\$/KWhr)
- Environmental improvement
 - Greenhouse gas reduction
 - Reduced water consumption
 - Dry cooling/suitable for arid environments

Challenges


- Confirm viability of existing components and suitability of materials
- Accommodating a wide range of operating parameters and applications
- Integrating and scaling up existing technologies into a new application
- Developing robust operating procedures for operating at critical point

Transformational Energy Systems

Nuclear Energy

20 meter Steam Turbine (300 MWe) (Rankine Cycle)

Nuclear Energy Advisory Committee Briefing

potential to surpass 40% efficiency

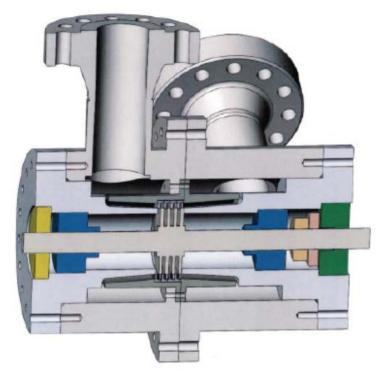
Comparison

 Greatly reduced cost for sCO₂ compared to the cost of conventional steam Rankine cycle

Rankine efficiency is 33%Supercritical CO₂ (sCO₂)

sCO₂ compact turbo machinery is easily scalable

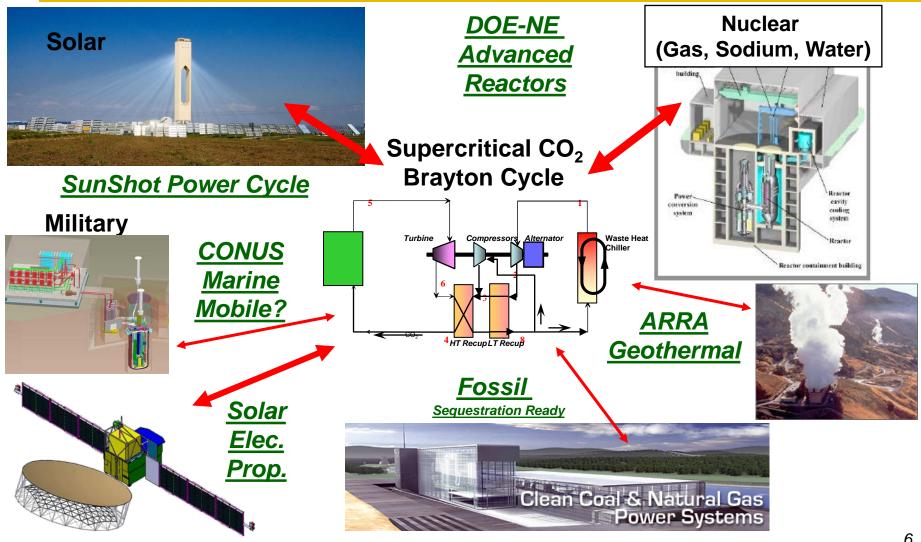
1 meter sCO₂ (300 MWe) (Brayton Cycle)



Office of Nuclear Energy Roadmap

Nuclear Energy

- Objective #3 Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals
- Maturing this technology promotes the Administration's "all of the above" clean energy strategy;
 - Contributes towards meeting national and energy goals
 - Promotes domestic industry growth
 - Facilitates industrial competitiveness


10 MWe Turbine ~ 30 in Courtesy EchoGen

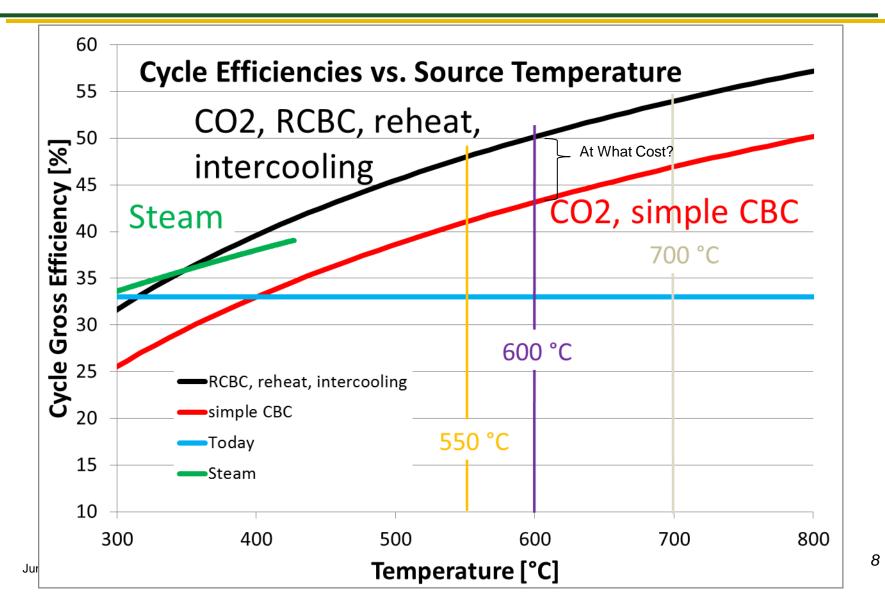
Supercritical CO₂ Cycle Applicable to Most Thermal Sources

Nuclear Energy

June 5, 2014

Nuclear Energy Advisory Committee Briefing

Many applications push the material requirements


Nuclear Energy

Nominal Application-Specific Conditions for sCO₂ Turbo Machinery (Ref. sCO₂ Power Cycle Technology Roadmapping Workshop, February 2013, SwRI San Antonio, TX)

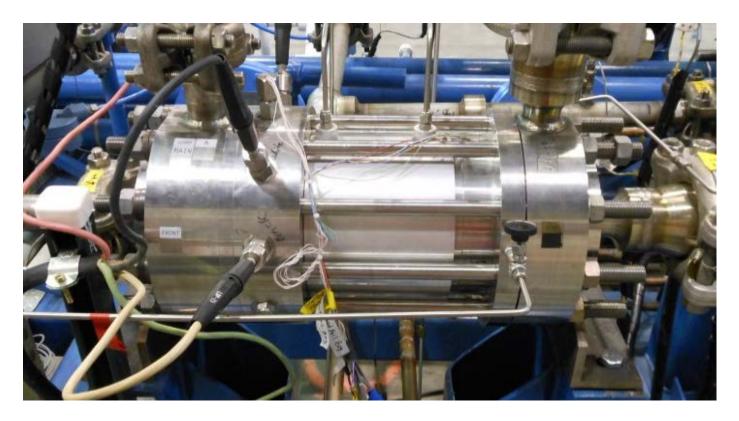
Application	Organization	Motivation	Size [MWe]	Temp [C]	Pressure [MPa]
Nuclear	DOE-NE	Efficiency, Size, Water	10 —	350 –	20-35
		Reduction	300	700	
Fossil Fuel (Indirect	DOE-FE,	Efficiency, Water	300 –	550 –	15 - 35
heating)	DOE-NETL	Reduction	600	900	
Fossil Fuel (Direct	DOE-FE,	Efficiency, Water	300 –	1100 -	35
heating)	DOE-NETL	Reduction,	600	1500	
		Facilitates CO ₂			
		Capture			
Concentrating	DOE-EE,	Efficiency, Size, Water	10 —	500 –	35
Solar Power	DOE-NREL	Reduction	100	1000	
Waste Heat	DOE-EERE	Efficiency, Size,	1 – 10	< 230 -	15 - 35
Recovery		Simple Cycles		650	
Geothermal	DOE-EERE	Efficiency	1 – 50	100 –	15
				300	

Pathway to High Conversion Efficiency

Recompression Closed Brayton Cycle (RCBC)Test Article (TA)

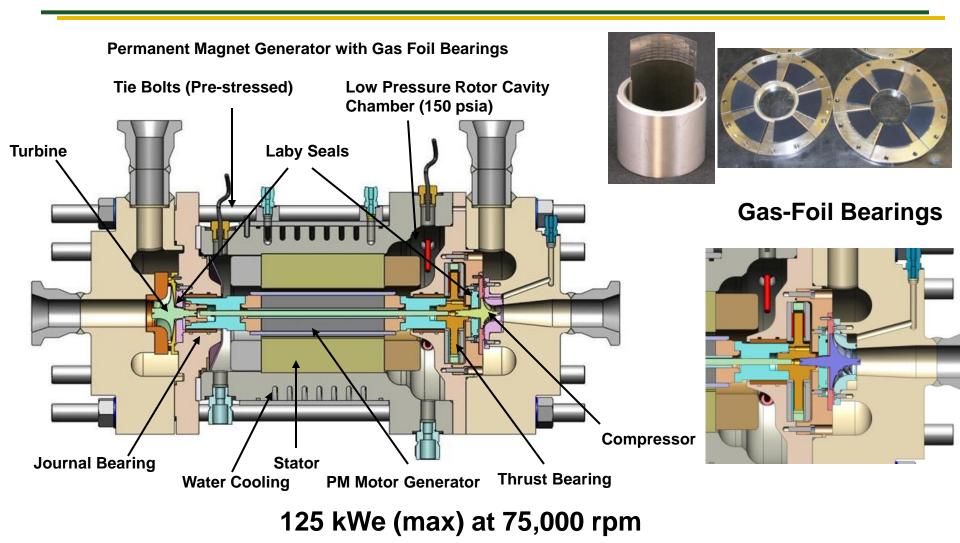
Nuclear Energy

TA Description:

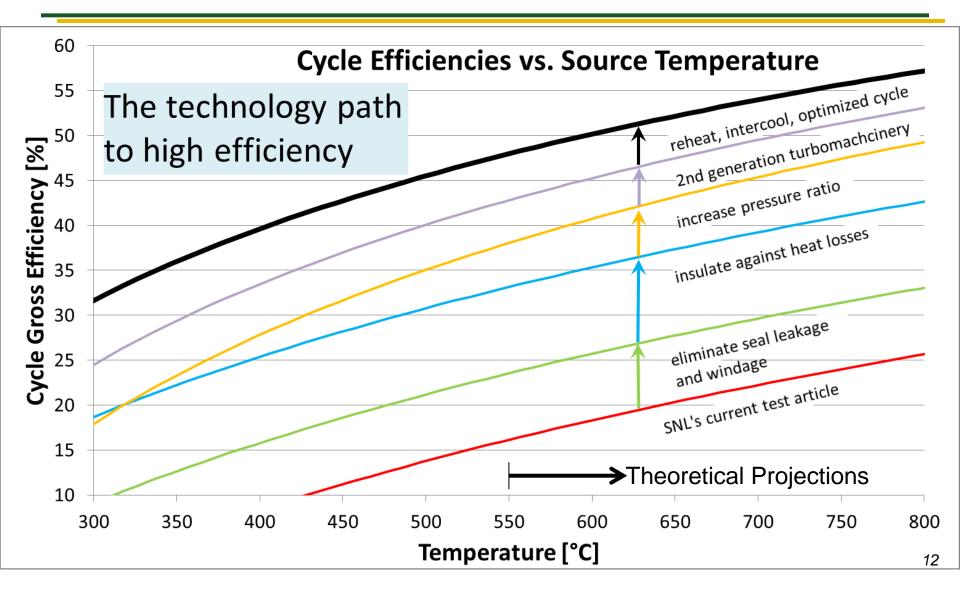

Heater – 750 kW, 550°C Max Pressure - 14 MPa TACs – 2 ea, 125 kWe @ 75 kRPM, 2 power turbines, 2 compressors High Temp Recuperator - 2.3 MW duty Low Temp Recuperator – 1.7 MW duty Gas Chiller – 0.6 MW duty Load Bank – 0.75 MWe Gas Compressor to scavenge TAC gas Inventory Control Turbine Bypass(Remote controlled) ASME B31.1 Coded Pipe, 6 Kg/s flow rate Engineered Safety Controlling Hazards Remotely Operated

- TA under test since 4/2010
- Over 100 kW-hrs of power generated
- Operated in 3 configurations
 - Simple Brayton
 - GE Waste Heat Cycle
 - Recompression
- Verified cycle performance vs theory
- Developing Cycle Controls
- Developing maintenance procedures

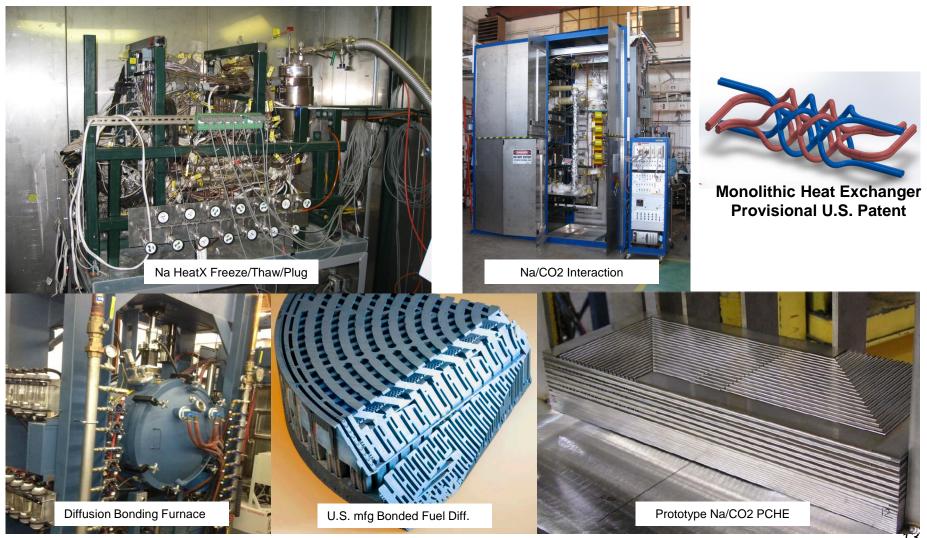
The Turbine-Alternator-Compressor (TAC)


Nuclear Energy

~24" Long by 12" diameter



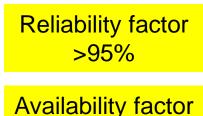
Key Technology Turbo- Alternator-Compressor Design


Pathway to High Conversion Efficiency

Advanced SMR Energy Conversion Heat Exchanger Development

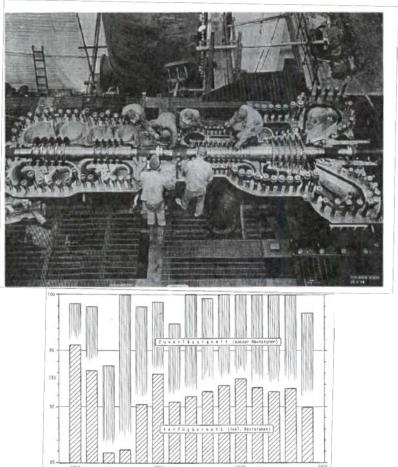
Nuclear Energy

Nuclear Energy Advisory Committee Briefing



The turbomachinery industry has been here before

Nuclear Energy

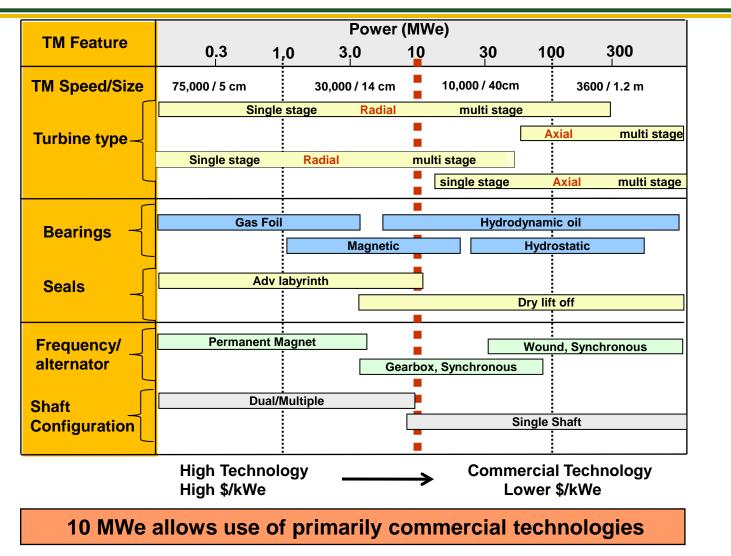

- Escher Wyss (EW) was the first company known to develop the turbomachinery for CBC systems starting in 1939
- 24 systems built, with EW designing the power conversion cycles and building the turbomachinery for all but 3.
- Plants installed in Germany, Switzerland, Vienna, Paris, England, Russia, Japan, Los Angeles, and Phoenix.

Fluid: Air @ 28 kg/s Tur. Inlet Temp 600-660°C Intercooling Net Eff. =23-25%

> 90%

Turbomachinery housing of the **12 MW** Nippon Kokan plant, built by Fuji Electric, based on EW design.

What's Next?


Nuclear Energy

- Commercialize a system <u>scalable</u> to 1000 MWe.
- Stronger emphasis on industry collaboration through CRADAs to provide equipment infrastructure resources.
- Improve the technology readiness and move toward "power on the grid" demonstration.
 - Move from TRL 3 to TRL 7 with the help of DOE and Turbomachinery Industry
 - Follow a systems engineering approach (ex. DOE 413)
 - A demonstration system must be built and extensively tested.
 - Must be directly "scalable" to power plant levels and put power on the grid
 - Performance must be well understood, modeled and benchmarked.
 - Availability and Reliability
 - Start-up and Shut-down
 - Heat source transients

Commercialization objective achieved when industry begins to mature sCO₂ Closed Brayton Cycles with "order books" indicating commercial production of systems.

Scaling Rules and Ranges of Application for Components

High Temperature Materials Needs

Nuclear Energy

125 kWe sCO₂ turbine rotor 550°C, INCONEL 718 (proposed for 700°C service – not in code)

- High temperature-high pressure boundaries for Primary Heat Exchangers and Piping
- The goal is high nickel sCO2 corrosion resistant alloy in large diameter pipe that can handle 850°C at 30 Mpa
- Current temperature limit is 650°C
- Slabs of such materials exist, but no manufacturer produces affordable material in less than years of lead time

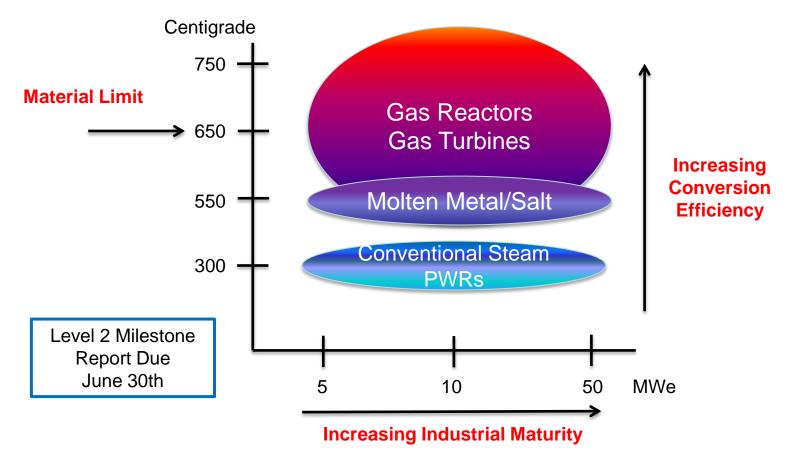
Advanced Heat Exchangers For High Efficiency And Small Volume

Nuclear Energy

High Temperature Recuperator

Gas Water Chiller

Low Temperature Recuperator


Prototype Sodium/CO2 PCHE

Demonstration Subsystem Options Survey

Nuclear Energy

Scanning the Turbine, Compressor, Power Generation industry to identify readiness of subsystem components for various CBC applications.

sCO₂ Programmatic Research Areas continuing under STEP

Nuclear Energy

correlation. •Thermo & techno- •Oxy-Pressurized f combustion (PFBC design & cost estin •Update creep-rupt data - high alloy m	luidized bed C) pilot plant - detailed mates. sure and microstructural naterials	•C d •s NF	E: Sodium – sCO_2 interaction studies Compact sCO_2 heat exchanger levelopment $s sCO_2$ Systems Codes Dynamic Modeling V&V 0 to 300 Mwe	
 Advanced internal design - testing ar Indirect 300 to 600 Mwe 	ly-cooled compressor ad evaluation FE	CO, CSI (EERE		
•Direct			CSP:	
•300 to 600 Mwe		GTO	•sCO ₂ solar receivers, materials	
	<u>GTO:</u>		compatibility	
	Power generation pilot - critical phase CO2 Enhanced	(EERE)	 Cost-effective heat transfer fluid/cycle working fluid heat exchangers 	
	Geothermal Systems (EGS) field pilot		 Transient operation / solar flux environments - control systems 	
	 Numerical simulations 		 Modeling and analysis of sCO₂ 	
	 Geothermal-specific component R&D 		integration with CSP systems using dry cooling	'
June 5, 2014	•1 to 50 MWe	r Energy Advisory Committee Briefing	•10 to 100 MWe	2

Nuclear Energy Advisory Committee Briefing

sCO₂ FY14 Activities

Nuclear Energy

Continue Program activities

- Nuclear Energy (NE)
 - Brayton Cycle R&D, HTXR, Na-CO2, Modeling, Plugging loop
- Fossil Energy (FE)
 - High temperature operations focusing on higher efficiencies, material development, C-sequestration
- EERE Concentrated Solar Program (CSP)
 - Continue to support Sunshot; SWRI
- EERE GeoThermal Office (GTO)
 - Continue to support the affect of sCO₂ on materials

sCO₂ Technology Team (aka Tech Team)

- sCO₂ Charter Complete
- Request for Information (RFI) for sCO₂ program support Issued
- Hold a sCO₂ Workshop June 23rd

Anticipated sCO₂ FY15 Activities

Nuclear Energy

Continue Program Technology Assessment activities

- EERE (CSP & GTO) continues to develop sCO₂ solar receivers and study degradation mechanisms of sCO₂ containment materials
- NE work on primary heat exchangers and liquid sodium / sCO₂ interaction continues
- FE continues to investigate s sCO₂ cycle modeling, analysis, determining the physical properties of sCO₂, and corrosion mechanisms for materials of sCO₂
- Supercritical Transformational Energy Power Generation (STEP)
- Cost-shared Demonstration (size & location tbd)
- Schedule
 - Issue FOA (1st /2nd Qtr FY'15)
 - Receive Applications (3rd Qtr FY'15)
 - Award/Post Award Process (4th QTR FY'15)

Summary

- STEP initiative is a multi-office collaborative DOE program to scale up emerging technology and accelerate commercialization of Supercritical Carbon Dioxide (sCO₂) Brayton cycle energy conversion system
- DOE proposes to conduct a cost-shared demonstration program that all Offices would benefit from:
 - Demonstration facility(s) size (TBD) (System Demonstration or Component Testing)
 - Requires recompression for optimal efficiencies over recuperated systems
- Ultimate temperatures, scalability, and materials to be explored
- Secures U.S. competitive advantage in a transformational clean energy technology
 - Assumes demonstration facility is operating by 2019 to facilitate technology transfer
 - Industry is marketing high efficiency commercial energy conversion systems using sCO₂