Resource Recovery Opportunities at America’s Water Resource Recovery Facilities

By Todd Williams, PE, BCEE
Wastewater Global Service Team Deputy Leader

Biomass 2014: Growing the Future Bioeconomy
Washington, DC
July 30, 2014
CH2M HILL Today

We are an industry leader in program management, construction management, engineering, procurement, and operations.

- Operations on all continents
- Approximately 28,000 employees
- 100 percent owned by our employees
- Broadly diversified across multiple business sectors
- US$7 billion in revenue
Our integrated solutions address the total water cycle and we consistently rank among the best:

- Water resources
- Drinking water
- Wastewater
- Reuse
- Stormwater and flood control
- Conveyance and tunneling
- Ecosystem management
- Climate change adaptation
- Greenhouse gas mitigation
- Utility and asset management
About half of all wastewater is processed using anaerobic digestion.

5127 Water Resource Recovery Facilities (WRRF) were surveyed, majority above 1 MGD (about 1/3 of all).

What does this have to do with 3-1-1?

Remember 3-3-6!
3-3-6!

- 3 Times as many WRRF’s are without Anaerobic Digestion (AD) as those with AD
- 3 Times as many WRRF’s with AD do not generate power or drive plant equipment as those that do
- 6 Times as many WRRF’s do not import FOG or high strength waste to feed digesters as those that do
- Plenty of opportunity exists for development of energy recovery at WRRF’s in the next decade
50 dry tons/day solids ≥ 600,000 ft³/day of biogas → $4,800/day energy value

55,000 gal/day FOG @ 5% solids + 50 dry tons/day solids ≥ 952,000 ft³/day of biogas → $7,600/day energy value

+ $1,022,000/yr energy value with FOG

F. Wayne Hill WRC, Gwinnett County, Georgia

50% of Plant Power Needs Met

Douglas L. Smith Middle Basin Facility
Johnson County, Kansas
The Resource Recovery Model

- Organic Wastes
- Food Waste
- Fats, Oils, and Grease
- Wastewater

Wastewater Treatment Plant

- Renewable Electricity
- Nutrient Harvesting
- Biodiesel
- Biosolids Fertilizer
- Recycled Water
Renewable Energy Expansion

Original Facility (3 engines)
- Installed in 1985
- Meet 40-50% of demand (2-2.5 MW net gen)
- Frequent flaring of excess biogas

Expansion (+1 turbine)
- Meet 100-200% of demand (5-10 MW net gen)
- Sell excess green energy
- Reduce air and GHG emissions
- Increase operational reliability
First WWTP in U.S. to Become a Net Electricity Provider

2013
Generation: 6MW
Demand: 5MW
Net Sales = 1MW

Net Electricity Provider

Electrical Grid

Wastewater Treatment Plant
Process Schematic of DC Water’s New Biosolids Program with THP and CHP

Gravity Thickeners → DAFTs

Blend Tank → Screening and Pre-Dewatering

Dewatering → Mix → Store & Loadout

Lime

Biogas Treatment and CHP

Mesophilic Anaerobic Digestion

Final Dewatering

Recycle Processing

Loadout

Class A

Class B

Power

Emissions

Steam

Biogas
Reduce biosolids quantities by more than 50%

Improve product quality (Class A)

Generate 13 MW (net 10 MW, or ~40% of total grid draw) of clean, renewable power

Cut GHG emissions by a third

Save millions of dollars annually when the facility begins operating in late 2014
R2E2 will generate 70% to 75% of overall facility power and heating requirements.
Hamilton, Ontario Combined Heat and Power (CHP) and Biogas Purification (BP) Systems

1. Biogas production was enhanced by increasing digester solids residence time and improving digester control.

2. Biogas production rates to increase from 17,150 m3/day (2010) to 36,900 m3/day (2031).

3. Existing 1600 kW combined heat and power unit utilizes 15,300 m3/day.
4. Value of excess biogas utilized by CHP or BP was compared.

5. NPV is function of electricity and natural gas rates.

6. Premium is available for renewable energy in Hamilton.

7. New CHP and BPU have a positive NPV at both market and renewable energy rates so BPU was installed.
What is the Future of Energy Recovery at WRRF’s?

- **Technology Drivers and Trends**
 - Better technologies to facilitate use of biogas
 - Better technologies to recover and use waste heat
 - Carbon footprint reduction

- **Operational Drivers and Trends**
 - Focus on solids and WRRF’s as a resource and recovery facilities
 - Increase in collaboration with outside entities
 - Increase in focus on sustainability and environmental stewardship

- **Communication Drivers**
 - Demand for better public outreach and education
 - Leverage multi-organizational communications and outreach
 - Research findings inside and outside of the WRRF sector
Resource Recovery Opportunities

Remember 3-3-6!

- 3 Times as many WRRF’s are without AD as those with AD
- 3 Times as many WRRF’s with AD do not generate power or drive plant equipment as those that do
- 6 Times as many WRRF’s do not import FOG or high strength waste to feed digesters as those that do

Todd Williams, PE, BCEE
todd.williams@ch2m.com