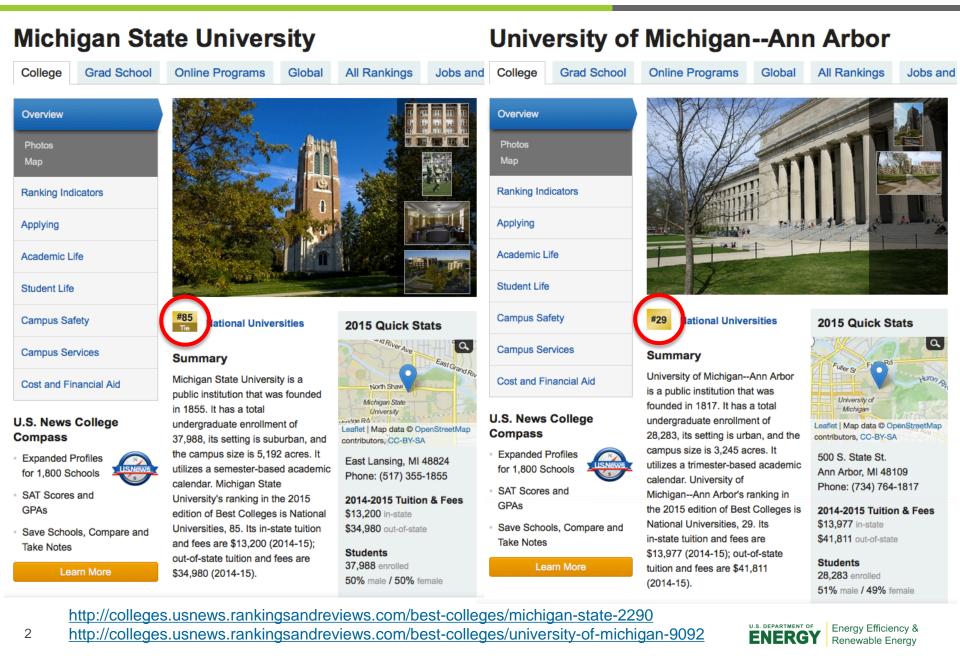


Control System Interoperability: Can We Talk?


DOE SSL Market Development Workshop

November 13, 2014

Michael Poplawski

Pacific Northwest National Laboratory

Welcome to Michigan

- Discuss some <u>Terminology</u>
- Review some examples of how <u>Interoperability</u> is achieved
- Understand the <u>Standards</u> development process
- Learn about the recent efforts of a some <u>Industry Consortiums</u> developing interoperability specifications
- Enable better <u>Conversations</u>

Key points

- There are many possible types, or levels of interoperability.
- Rarely does one "protocol" define and deliver full "applicationlevel" interoperability.
- Interoperability can, and should be (carefully) specified.
- Not all specifications are similar, even if their purposes appear to be similar.
- Specifications are developed for different purposes, by different types of bodies, and using different processes.
- No specification is perfect.

System terminology

- <u>Compatibility</u>: Two devices (or a device and a system) are compatible if they can coexist in a system (or in the same physical environment) – that is, operate without corrupting, interfering with, or hindering the operation of the other entity.
- <u>Interoperability</u>: Two devices (or a device and a system) are interoperable if they can both work together to operate as intended, typically facilitated by an ability to share a common defined set of information.
- <u>Interchangeability</u>: Two devices are interchangeable if they can be physically exchanged for each other, and provide a defined level of identical operation in a system without additional configuration.

Compatibility, Interoperability, Interchangeability

ENERGY Renewable Energy

Compatibility			
 Interference with broadcast or communication networks (addressed by FCC, CISPR) Phase controls and LED source issues (focus of NEMA SSL-7a) 	Interoperability 1) 0-10V, DALI	Interchangeability	
	2) ZigBee, EnOcean 3) Connected Lighting Alliance, TALQ, ANSI C137	1) ANSI bases 2) Electrical, mechanical, thermal interface (focus of Zhaga) 3) ANSI C137	

- Facilitates ability to integrate best-of-breed components (e.g. controllers, sensors, software) into a system
- Facilitates ability to modify and improve an existing system as you learn what you (really) need/want
- Helps manage risk of component, manufacturer obsolescence
- Facilitates the sharing of data
 - Devices share data they generate
 - Devices can use data generated elsewhere
 - For adaptive lighting
 - For non-energy benefits
- Sharing of application data requires a common application definition (sometimes referred to as functional profile) ... or an upto-date "translator"

Some interoperability specifications & standards

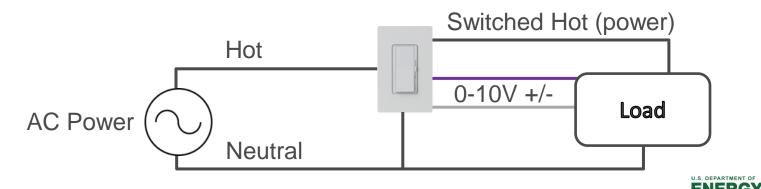
- 0-10V
- DALI

• ZigBee

Zhaga

EnOcean

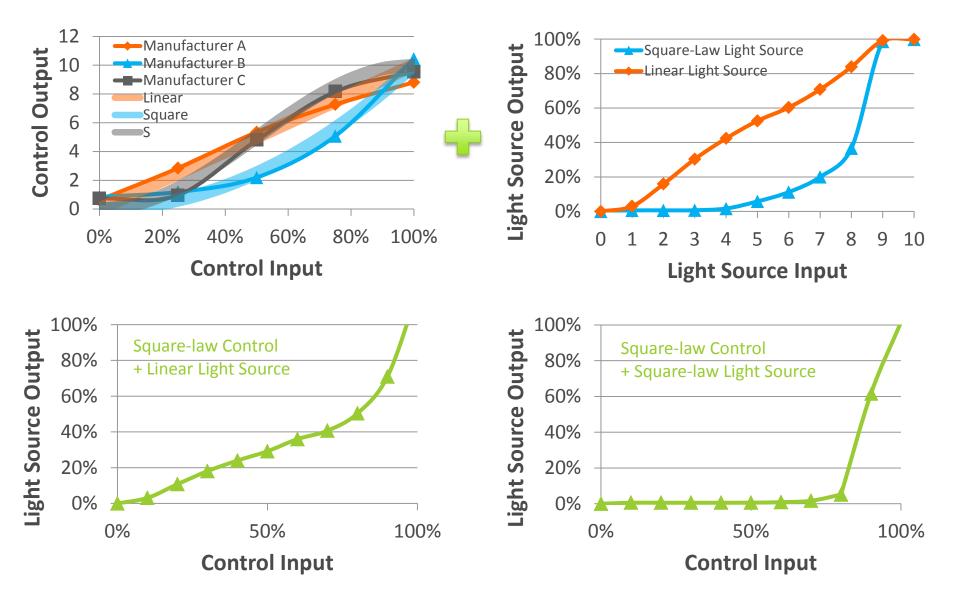
- Insteon INSTEŮ№
- Ledotron



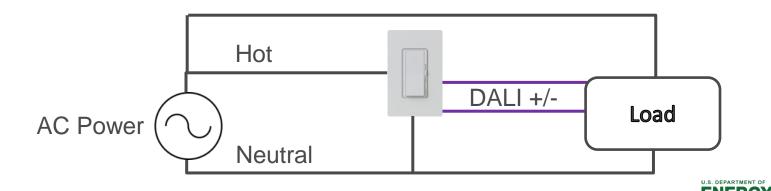
0-10V overview

- Separate AC power and control
- Analog, one-way communication
- Actually two "standards"
 - ANSI E1.3, originally developed by the Entertainment Services and Technology Association (ESTA) in 1997 for theatrical equipment
 - IEC 60929, originally released in 1992 for linear fluorescent systems
- Requires two low-voltage differential wires per control channel, which carry a low-speed signal, directly connected between each control and load
- Impossible to assign individual control devices (dimmers, sensors) to one or many light sources without added wiring

Energy Efficiency &

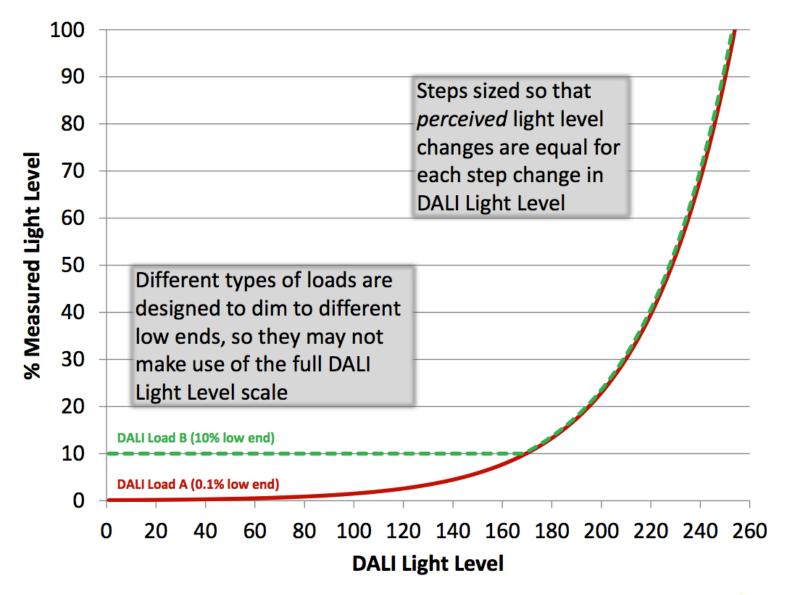

Renewable Energy

- Features
 - Cost-effective control
 - Control zones can be run separate from power zones
 - Few interoperability problems when all components comply with same "standard"
- Challenges
 - Typically (not always) requires line-voltage switching
 - Costly wiring requirements
 - Long wire runs can affect performance (e.g. dimming range, accuracy)
 - "Standards" do not specify whether controls signals should be run as UL Class
 1 or Class 2
 - Unknowing use of components complying with different "standards" results in interoperability problems
 - Limited definition of application requirements

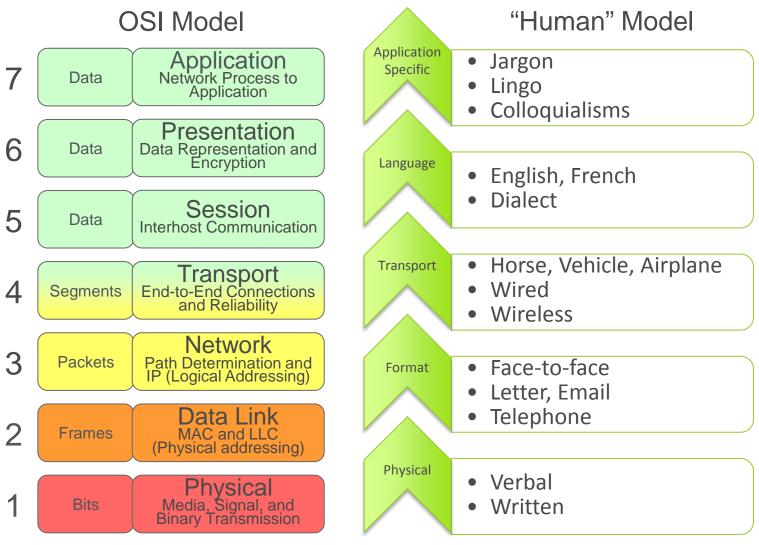

0-10V dimming control performance

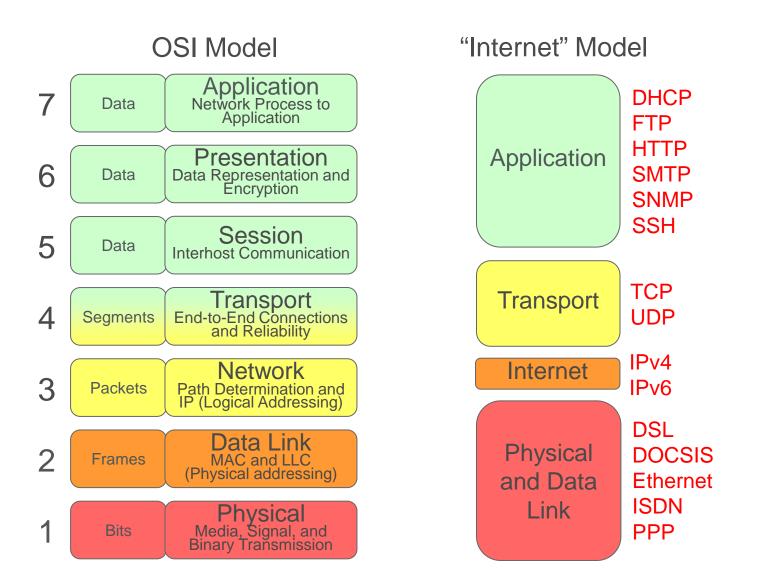
DALI overview

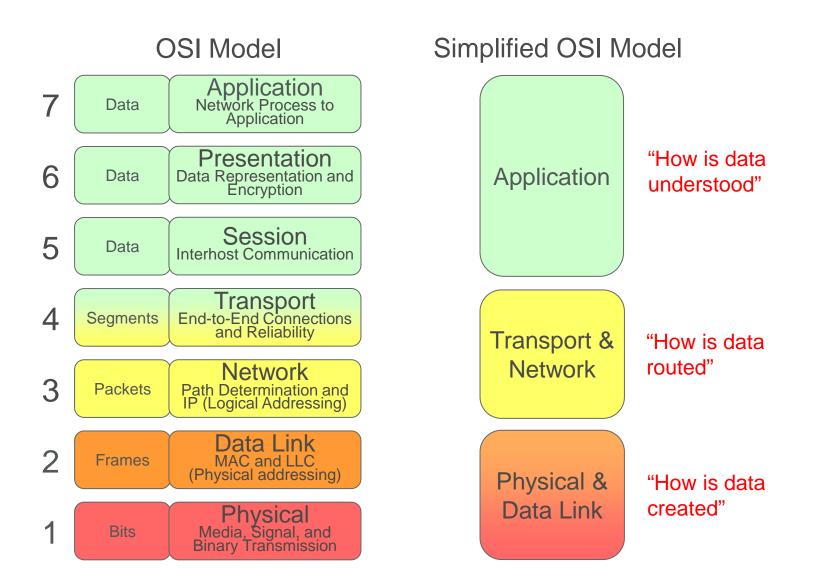
- Digital, two-way communication
- Originally developed in 1990's as part of IEC 60929 for linear fluorescent systems
 - Recently removed, expanded and turned into IEC 62386
- Requires two low-voltage differential wires which carry a low-speed signal, daisy chained across one or more devices
- Easy to assign individual control devices (dimmers, sensors) to one or many light sources without added wiring


Energy Efficier

Renewable Energy


- Features
 - Single interface for Electronic Control Gears and Electronic Control Devices
 - Addressing of up to 64 individual components per DALI link, at data rates of 1200 bits/second
 - Allows control and status reporting of wide variety of ballasts, dimmers, sensors
 - Presumes that control signal is run as UL Class 1 (with AC)
- Challenges
 - Addressing of up to 64 individual components per DALI link, at data rates of only 1200 bits/second
 - Many manufacturers have "proprietary" extensions, resulting in interoperability problems with components from other manufactures
 - Typically time-consuming and complex commissioning
 - Some manufacturers run control signal as UL Class 2


DALI ... as specified by IEC-62386 Parts 201,202,...210



http://en.wikipedia.org/wiki/OSI_model

Some more interoperability specifications & standards

- 0-10V
- DALI

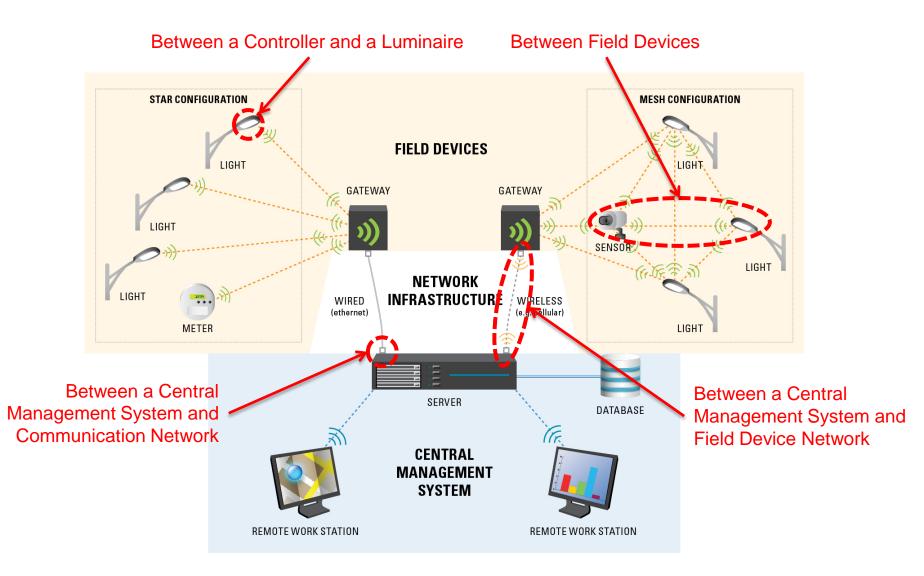
• ZigBee

ZigBee®

Zhaga

- EnOcean
- Green. Smart. Wireless.
- Insteon
- ΙΝ ΣΤΕ 🖞 Ν°
- Ledotron

- <u>Connected Lighting Alliance</u>
- <u>TALQ Consortium</u>
- ANSI C137 "Lighting Systems"
- <u>LonMark</u>
- ZigBee Alliance NAN
- <u>Wi-SUN</u>
- <u>NTCIP</u>
- <u>3GPP</u> (<u>LTE</u>, <u>LTE-Advanced</u>, <u>LTE-Direct</u>)
- <u>AllSeen Alliance</u>



Facilitating interoperability...

- Gateways, drivers, schemas serve as bridges between devices and systems, providing or translating across one or more interoperability layers (physical/data link, network/transport, application)
- Protocol changes (e.g. bug fixes, feature additions) require updating the translator
- Some changes happen more frequently than others
- Some changes are easier to update than others (e.g. firmware, driver, software)
- Deeper levels of device-to-device interoperability (i.e. fewer translators) can deliver greater system flexibility and performance, but require broader, deeper adoption of specifications/standards

Changes are coming...

- Drive for interconnected systems
- Likely not one lighting, building protocol
- Likely not one master command center
- Building, lighting systems look more like IT systems
- Devices and systems that connect to communication networks, exchange data, and make intelligent decisions

Changes are coming...

<u>Goals</u>

- Improve compatibility?
- Ensure interoperability?
 - At what levels(s)?
 - For what features?
- Ensure

interchangeability?

- At what levels(s)?
- For what features?

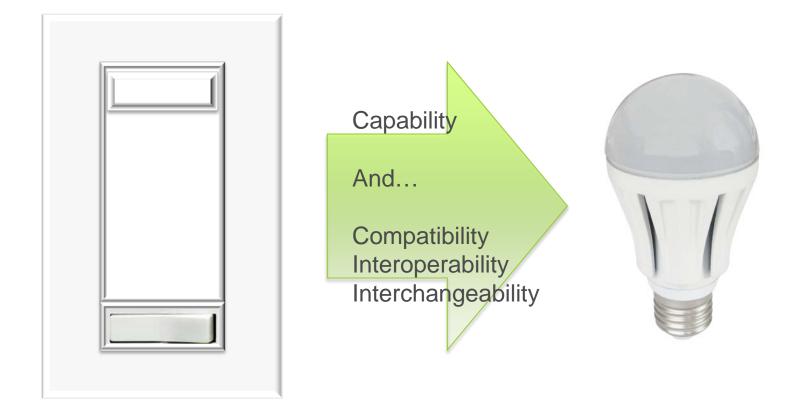
Characteristics

- Open?
- Licensed?
- Fee?
- Compliance testing?

Standard development process

(Overly) simple interoperability questions to ask

- What data communication aspects does the specification address? How data is physically created? How it is routed? How it is understood?
- What application-level features and/or performance does the specification guarantee (if any)? Does the specification contain functional profiles? For what types of devices?
- How is compliance with an interoperable specification verified, reported?
- How mature is the specification? Is is open? Licensed? Is there a fee? What is the fee used for? Has it been standardized?
- What other devices/systems or device/system vendors does your product work together with? What "translators" are required? Where do those "translators" physically reside in the system? How are they updated?



- Industry consortiums
- Driven by lighting end-product manufacturers (i.e. lamp, luminaires, controllers, software rather than sub-components)
- Focused on interoperability
- Managed compliance testing and reporting

Lighting system performance is a function of ...

Greater interoperability promises to ...

- Increase adoption
- Increase user satisfaction
- Facilitate the deployment of an energy-saving platform (multiphase, not limited to initial install choices)
- Leverage crowd-source development (software, use cases)
- Reduced incremental cost (software vs. hardware)
- Communicate measured performance (hours-of-use, energy)
 - Simplified utility programs
 - Decouple increased energy savings from new hardware, installation

Recommendations

- Let go of the past (experiences, approaches)
- Leverage new industry (lighting and non-lighting) specification development
- Figure out how to specify interoperability based on your needs
- Demand managed compliance testing
- Don't add to the confusion
- Promote, facilitate ecosystem that streamlines the path to mature standards
- Be patient during (and contribute to!) the maturity process

Energy Efficiency & Renewable Energy

Questions?

DOE SSL Market Development Workshop

November 13, 2014

Michael Poplawski

Pacific Northwest National Laboratory