

Contact: Kimberly Ogden

Department of Chemical and Environmental Engineering
University of Arizona
Tucson, Arizona USA
ogden@email.arizona.edu

Project Goals

- Obtain long term algal cultivation data in outdoor pond systems
- Work with industrial, government, and academic partners to advance the algal biofuels and bio-products industry
- Optimize biomass and lipid content for production of biofuel using impaired waters
- Develop real time sensors and control strategies for efficient cultivation
- Improve and refine cultivation models, as well as system techno-economic models and life cycle assessments.

ARID Raceway US Patent # 8,245,440

Ability to Cultivate GMO Algae in Climate Controlled Green Houses

Raceways and Solix System - Centrifuge harvester

Hot house with raceway for seasonal extension

Multi-scale Testbed Facility with Harvesting Infrastructure

Cultivation of Chlorella sorokinana

Spring and Summer 2014

Media Optimization

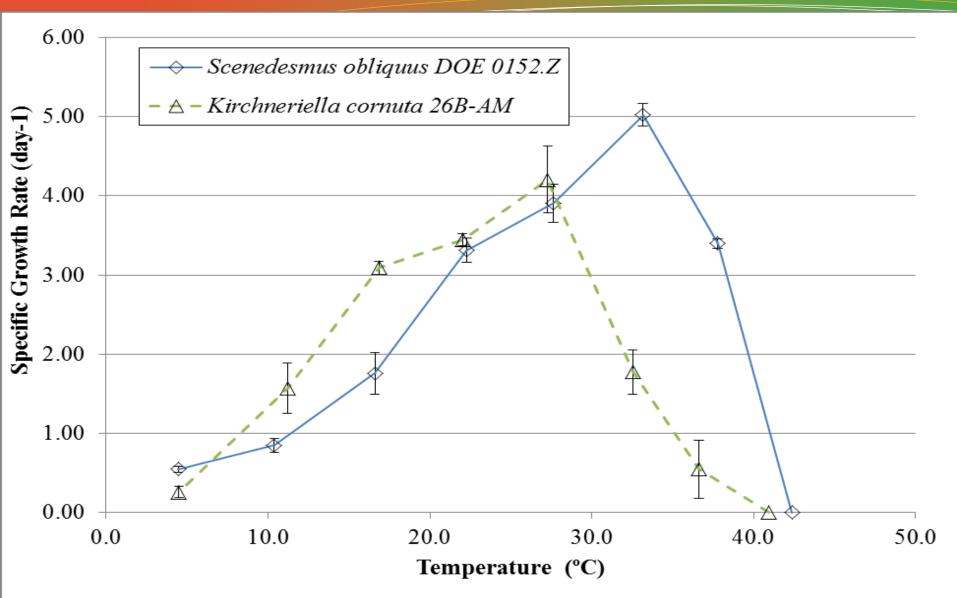
Pe-06 (or Pe-02_B)				
Required volume (L) =		1		
Chemical	Common name	g/L	Total Grams	Total Kilograms
Na ₂ CO ₃	Soda Ash	0.02	0.02	0.00002
NaCl	TruSoft	5	5	0.005
(NH2)2CO	Urea	0.05	0.05	0.00005
MgSO ₄ * 7H₂O	Magnesium sulphate	0.012	0.012	0.000012
NH ₄ H ₂ PO ₄	MAP	0.01	0.01	0.00001
KCI	Potash	0.129	0.129	0.000129
FeCl	Iron Chloride	0.0035	0.0035	
Di Sodium EDTA		0.00436	0.00436	
Trace metals solution		1	1	0.001
Vitamin solution (100 X)	Vitamin solution	0.005	0.005	ml
Trace metals solution				
Common name	g/L	Vendor		
Boric Acid	0.00286	VWR		
Manganese Chloride	0.00181	VWR		
Zinc Sulfate	0.000222	VWR		
Copper Sulfate	0.000079	VWR		
Cobalt Nitrate	0.0000494	VWR		
Sodium Molybdate	0.000391	VWR		

Data Collection

- Speadsheet example data
- Growth rate modeling Flask to field
- Techno-economic model BAT

Culture Diagnostics

- PCR diagnostics of invasive strains identified by 18S rRNA gene fragment sequencing
- Specific primers for algae and bacterial contaminants
- Flow Cam Systems for monitoring
- Real time OD monitor and flow cell Invention disclosure and patent
- Contaminant Control to maintain Chlorella sp.


Climate Controlled Cultivation
Systems for Growth and Biomass
Optimization and Modeling

Characterizing Cold Weather Strains

Opportunities for Collaboration

- Production of algal biomass for a variety of applications
 - Fuel
 - Feed
 - High value Products
- Cultivation of genetically modified algae
- Design and implementation of integrated, controlled systems for cultivation, harvesting, and conversion.
- Optimization of algal productivity in impaired waters
- Culture diagnostics using molecular markers