John A. McGowen PhD, PMP Director of Operations and Program Management Arizona Center for Algae Technology and Innovation (AzCATI) Arizona State University

July 30, 2014, Biomass 2014

 One little cell, a world of possibilities.
Algae Testbed
Public-Private Partnership

www.atp3.org

Overview

- Introduction to AzCATI
- Objectives for ATP³
- Open Collaborative Testbed
- High Impact Data from Long Term Cultivation Trials

Summary

Arizona Center for Algae Technology and Innovation

The Arizona Center for Algae Technology and Innovation (AzCATI): formed in 2010 through stimulus funds designated by the Science Foundation of Arizona to serve as a hub for research, testing, and commercialization of algae-based products.

- Connect
- Advance
- Collaborate
- Educate
- Launch

AzCATI capability

Fully integrated program teams

Comprehensive and integrated solutions

AzCATI Portfolio

Bioenergy Technologies Office

AzCATI – \$4M. CO₂ mitigation from flue gas into algae based fuels; Reactor development; Strain selection and development; Processes for products; Wastewater; Downstream processing and nutrient/media recycling; Test bed expansion

USDA – \$1M. Development of best management practices for algal crop protection

ARPA-e – \$7M. Cyano-bacterial based photosynthetic factories - secrete fatty acids for fuel production

SABC – \$ 6M. Biochemical conversion of algae to fuels; QA/QC protocols & characterization; Enzymatic pretreatment for fuels

ATP³ – \$15M. National algae test bed network

DOE – \$0.5m. Managing microbial ecology in cultivation systems

Steady and encouraging progress for the Algae Industry

Challenge Space:

- 1. High cost of production
- 2. Demonstrating scalability and
- 3. Availability of nutrient/CO₂/water resources

Opportunity Space:

Technical

- Increase productivity
- Increase lipid content
- Increase robustness and resiliency to resist predators
- Improve early detection of contaminants
- Develop new strains to handle high salinity
- Improve energy efficiency of downstream processing

 Support from USDA for algae as precision agriculture

Policy

- EPA and USDA collaboration critical on CO₂ and GMO policies, crop designation, agricultural practices and policies and tax incentives/rebates.
- Carbon reuse and EPA rule-making: recycle waste rather than bury waste

Business

- Take advantage of high value markets to facilitate learning
- Continue to focus on multiple technology pathways and strategies
- Foster business innovation

Collaboration, convening and leverage

Collaboration, convening and leveraging represents the largest set of opportunities the algae industry can seize in order to confront its challenges

> Collaborate Convene Leverage

- Share knowledge, accelerate learning
- Reduce risk
- Accelerate R&D (commercial) outcomes
- Maximize return on investments
- Increase probability of success
- Reduce business failures

ATP³: National open test bed

The formation of the Algae Testbed Public-Private Partnership leveraged the existing resources at AzCATI and partner sites. The network represents a collaboration of industry, laboratory, and educational facilities across nation. ATP³ aims to convene all algae stakeholders to facilitate opportunities and progress more rapidly to commercialization..

ATP³ primary objectives

Collaborative Open Testbeds

- Establish network of facilities for the algal research community and increase stakeholder access to real-world conditions for algal biomass production.
- Accelerate applied algae research, development, investment, and commercial applications for biofuel and bioproduct feedstock production.

High Impact Data from Long Term Algal Cultivation Trials

- Design and implement a unified experimental program across different **regional, seasonal, environmental and operational conditions** comparing promising production strains at meaningful scales.
- **Data made widely available** to the TEA/LCA and overall research community allowing for a robust analysis of the state of technology.

ATP³ partners

AzCATI

Arizona Center for Algae Technology and Innovation

Renewables

UTEX The Culture Collection of Algae at The University of Texas at Austin

Valicor

Commercial Algae

Management, Inc.

Collaborative Open Testbeds

ATP³ offers access to a wide array of services, capabilities and facilities:

Regional testbed facilities for the partnership are physically located in Arizona, Hawaii, California, Ohio, Georgia, and Florida.

ATP³: Open for business

- Providing biomass, equipment testing, analytical, culture maintenance and consultation services to academia, industry and national labs
- Includes fee-for service activities, sponsored research, and subsidized projects through ATP³ Support Program
- The ATP³ model is positioned to drive technology research and development- a place to de-risk and validate technology innovations

ATP³ Offers Support Program

The Goal – encourage and enable small businesses, entrepreneurs and underfunded academic researchers to pursue new approaches to solving technical issues associated with commercialization of algae biofuels, processes, and co-products.

What is it ? – For a limited number of applicants that need access to laboratory and outdoor facilities as well as resource support for novel projects, ATP³ will provide subsidized access to testbed facilities, technical expertise, materials, and supplies. Preference for support will be given for short-term projects ranging from 1-3 months and the willingness to share data and results widely through publication.

Easy to start the process: Visit ATP3.org and fill out an expression of interest form

Initial cohort of support projects includes:

- Novel cultivars for flue gas capture (University of Delaware)
- Carbon management and delivery (LBNL)
- AD with LEA (Cal Poly)

Initial cohort of support projects includes:

 Accepting applications for next cohort selection

Support may include:

- Biomass (whole, extracted, oil)
- Access to cultivation & downstream equipment (eq. transport, install/removal)
- Access to R&D, production & analytical expertise
- Access to laboratory and office space
- Travel stipends to testbed (currently limited to academic clients)

Education & training

- Quarterly educational workshops hosted at ATP³ sites
- Well attended by broad mix of academic and industrial participants

TESTIMONIALS

"ATP³ workshops provide access to large-scale algae facilities and a great forum to chat with experts in an informal setting." Berat Haznederoglu, Assistant Professor Water Resources Engineering, University of Buffalo

"ATP³'s workshop really helped me learn how algae is produced from beginning to end." Scott Forsberg, Director of Product Development Health Enhancement Products, Inc.

High Impact Data: Long Term Algal Cultivation Trials

ATP³ sets standards and conducts harmonized, rigorous, and objective long term cultivation trials to provide a realistic assessment of the state of technology for algal based biofuels and bioproducts.

- Our Unified Field Studies (UFS) at the 6 testbed sites along with our Advanced Field Studies (AFS) enable comparison of promising production strains at meaningful scale across variable conditions
- Our Scientific Data Management System and validated, harmonized SOP's for analytical and production processes ensures data integrity across all sites
- Our data from the UFS and AFS will be made publicly available and provide a critical resource to TEA and LCA analysis yielding high impact, validated data

Field Studies for High Impact Data

 Unified = All six testbed sites performing the same experiment in the same systems with the same protocols and strains simultaneously

Cellana UFS ponds

 Advanced = Sites with various capabilities will test additional production methods and variables to provide data to further enrich the model inputs

Cellana Large Scale Ponds

Standardization of processes and systems is key to executing meaningful multi-site cultivation trials

Standard Experimental Conditions and Sampling

Factors	Set Point
Aqueous N (μM)	2200 (136.4 mg/l)
pH (Nanno)	7.9
pH (Chlorella)	7.9
Depth (cm)	25
PW speed (Hz)	20
Inoculum (g L ⁻¹)	0.05

Samples	Schedule
DD@ 750nm	Dawn +60 min, M – F
W	Dawn +60 min M, W, F, T0, TF
AFDW	dawn +60 min M, W, F, T0, TF
	T0 (inoculation or directly post-
	dilution), TF (prior to a harvest or
Mass balance	dilution occurring) – samples MUST
lipid/FAME, carbs, starch, protein).	be taken within 1 hour of
Parameter must have an AFDW	AFDW/OD or a new AFDW sample
associated with all samples	is required
Nutrients	Dawn +60 min M, W, F, TF
Weather data	Real time (hourly)
n-situ sensors	Real time (15 minute intervals)
Vicroscopic exam	dawn +60 min M, W, F
	Weekly, upon pond health
Genetic Analysis, qPCR	decrease,
Vlanual checks (pH, temp, salinity,	
lepth)	Daily; AM and PM
% Shading	Monthly; AM, Mid, PM
Nater chemistry	Monthly ICPMS testing
	1.0

Strains/Cultivar: Primary

UFS Strains

- Nannochloropsis oceanica, supplied by Cellana
 Distributed to all sites fall, 2013
- Chlorella vulgaris, LRB-AZ-1201 supplied by ASU
 - Distributed to sites June, 2014
- Representative cultivars for fuel and high value (feed, omega-3's) production
- Additional strains may be used for AFS

2014 UFS cultivation trials: Progress to date

Public Access to Data

Using the existing infrastructure and expertise of OpenEI.org will provide a rapid, robust, and lowcost solution for making the ATP³ datasets public. Target for first data release: September, 2014.

Example business opportunity: Near term markets facilitate long term learning

Small markets, High value products

Pharmaceutical & specialty chemical products: \$25k to \$800k per MT A higher-value, multi-product focus is essential for cash flow for start-ups, and part of a diversified, targeted marketing strategy to generate revenues.

Mid-sized markets, mid to high value products

Pharmaceutical, chemical & nutraceutical products: \$2,000 to \$25,000 per MT

Baby food formula | Cosmetics Plastics | Food additives | Healthy oils | Many of the stakeholders seeking access to the test beds and ATP³ services are in the higher-value market or are developing and commercializing innovations that are market agnostic.

Large market, Low-value products Bigger Markets, lower values: \$500 to \$2,500 per MT Vegetable oils for consumption and biofuels Carbon capture, bioremediation Algal crude and bio-crude

Source: "Algae 2020 Study" Emerging Markets Online report (2009)

Summary

- The algae industry has the potential to displace sizeable quantities of petroleum consumption as a co-product.
- Through open access programs like ATP³ stakeholders can convene, collaborate and leverage in accelerating the pace of innovations.
- To succeed, algae R&D needs sustained support through grant funding and policy enablers
 - ✓ CO₂ re-use is critical to algae production; policy should be geared to making it low cost and deriving valuable when possible.
 - Crop protection needs research to improve capacity, utilization, and volumes.
 - ✓ GMO policies, crop designation, agricultural practices and policies, and tax incentives/rebates are needed.

Acknowledgements

ASU

Garv Dirks John McGowen **Thomas Dempster** Milt Sommerfeld William Brandt Jessica Cheng Jordan McAllister Sarah Arrowsmith David Cardello Theresa Rosov Mary Cuevas Jeffrey Prairie **Richard Malloy** Xuezhi Zhang Henri Gerken Pierre Wensel Linda Boedeker Sarah Mason Travis Johnson Sydney Lines

UTEX Jerry Brand

Schonna Manning U.S. DEPARTMENT OF

NREL

Phil Pienkos Lieve Laurens Ed Wolfrum David Crocker **Ryan Davis** Stefanie Van Wychen Eric Knoshaug Sandia National Labs Ron Pate Todd Lane Patricia Gharagozloo Thomas Reichardt Jessica Drewry Pamela Lane Cal Poly Tryg Lundquist Braden Crowe Eric Nicolai **Commercial Algae** Management Albert Vitale Robert Vitale **Georgia Tech** Yongsheng Chen Steven Van Ginkel Thomas Igou Zixuan Hu

Cellana Valerie Harmon Egan Rowe Emily Knurek Kate Evans Peter Prentiss Revna Javar Kari Wolff Keao Bishop-Yuan Lynn Griswold Christina Boyko Charlie O'Kelley

ASU Undergrads Wyatt Western Mariah Patton Maria Bautista Carlos Luna **Delaney De Hertogh** Shaylin Mcghee Caden Offield

G.Tech Undergrads Fariha Hassan Jerry Duncan Frazier Woodruff Shusuke Doi Hao Fu Patricia Penalver-Argueso Allison Dunbar

Florida Algae

Steven Schlosser Chris Withstandley Mary Riddle Nancy Pham Ho (FIT)

Touchstone Research Laboratory Xuevan Liu Phil Lane Doug Amie Brian Gordon

Allison Carr Sichoon Park Priya Pradeep **Terry Snell** Catherine Achukwu Christine Yi

Cal Poly Undergrads Avdee Melgar Gulce Ozturk Kaitlyn Jones Michael Antoine Trung K Tran Jake Bender Heather Freed Daniel McBroom Michele Hendrickson **Gerard Nguyen Deven Diliberto** Jack Sunderland Dan Averbuj Ann Marie Segueira Lauren Miller Michele Hendrickson **Emily Wang** Jack Sunderland Ann Marie Sequeira Soroush Aboutalebi Lauren Miller Samantha Lui Michele Hendrickson **Gabriella Campos** Will Briles Letty Thottathil

www.atp3.org