

Home Innovation RESEARCH LABS

Building America Webinar Topic 9: High Performance Space Conditioning Systems, Part II November 18, 2014

Compact Buried Ducts

Dave Mallay

Home Innovation Research Labs

Finding Innovation a Home

Presentation Overview

- What are compact buried ducts?
- Field data from the mixed-humid climate
- Test house in the hot-humid climate

Background

Installing ducts in conditioned space:

- Heating & cooling energy savings
- A challenge for some house designs

Constructing an unvented attic:

- A viable approach
- May not be cost-effective

Installing conventional attic ducts:

- Convenient
- Not energy efficient

Buried Ducts

Buried ducts:

- Insulated ducts in a vented attic
- Installed close to the ceiling
- Covered with attic insulation
- Benefits:
 - Design flexibility
 - Can be an energy efficient alternative
- Issues:
 - Condensation in humid climates
 - Duct leakage
- Current best practices:
 - Encapsulate ducts (closed-cell spray foam)
 - Building America ZERH program exception

Compact Ducts

Compact duct layout:

- Minimizes duct surface area
- Reduces duct pressure losses
- May reduce installed cost
- Further reduces energy losses where combined with buried ducts

Design considerations:

- Central returns
- Transfer grilles
- Supply registers
- Noise control

2009 Mixed-Humid Project

Duct Design –

- Compact central return in conditioned space
- Bedroom transfer grilles
- Insulated R-8 attic supply ducts
- Encapsulated trunk and boots (not branches)

Duct Results –

- Rough-in: 1.0 CFM25/100SFcfa (25CFM25) attic ducts only before spray foam.
- Final: 85 CFM25 total, 0 outdoors.
- Monitoring: no condensation measured
- Reduced duct area: 70% less return, 28% less supply, 40% less overall

2012 Mixed-Humid Project

Duct Design –

- Compact central return chase
- Compact supply duct layout in attic
- Double R-8 branches, R-8 register boots
- Encapsulated trunk (not branches or boots)

Duct Results –

- Rough-in: 1.9 CFM25/100SFcfa (43 CFM25) (same after encapsulation)
- Final: 98 CFM25 outdoors (downstairs system 84 CFM25 outdoors)
- Monitoring: No condensation measured

Worst Case Condensation Potential

Plots the difference between the temperature and dew point. <u>Takeaway</u>: no condensation observed at these 15 sensors.

2014-2015 Hot-Humid Project South Carolina Test House

Research Purpose

 Develop a buried duct system that performs effectively as ducts in conditioned space in mixed-humid and hot-humid climates.

Research Goals

- Develop a buried duct design that does not rely on encapsulation.
- Incorporate a compact duct layout for best performance.
- Develop HVAC design guidance for performing accurate heating and cooling load calculations.

Moisture Dynamics in Vented Attics

Research Objective:

 Determine minimum duct Rvalue to prevent condensation

Methods:

- Hygrothermal Modeling
- Monitor moisture conditions at an existing house
- Install and monitor a modified duct design at a test house

Monitored DataPlots Attic Dew Point TemperaturesTakeaway: dew points within the attic are dynamic!

Preliminary Modeling Results

Plots sensor dew points – modeled & measured <u>Takeaway</u>: Lower measured DPs during the day

Monitored Data

Plots sensor & duct dew points and duct temperature <u>Takeaway</u>: the duct surface T is below the corresponding height sensor DP, but above the duct surface DP

SC Test House Duct Design

Compact duct layout

- Central return jump duct/transfer grilles
- Most supply registers near interior walls

Buried duct insulation

- R-8.7 duct-board trunk
- R-8 branches and boots (one R-12)
- Supplemental at flex connections

Duct tightness

- Total target: 3 CFM25/100SFcfa
- Rough-in target: 1 CFM25/100SFcfa
- Seal using mastic and zip ties

Attic insulation (R-38)

Mound R-30 over buried ducts

Monitoring

Sensors to monitor condensation

Summary

The compact buried duct approach can be a practical alternative to ducts in conditioned space:

- Can be insulated to prevent condensation
- Can be sealed to within acceptable standards
- Can provide energy savings and comfort
- A compact duct layout can benefit any duct system
- Next Steps: monitor & evaluate the test house

Home Innovation RESEARCH LABS

THANK YOU!

Home Innovation Research Labs

400 Prince George's Blvd Upper Marlboro, MD 20774

Dave Mallay dmallay@HomeInnovation.com

Finding Innovation a Home