Natural Gas Infrastructure R&D and Methane Mitigation Workshop Nov. 12-13, 2014

Improving Compressor System Operational Efficiency

W. Norm Shade, PE
Sr. Consultant & Pres.-Emeritus
ACI Services Inc.
Cambridge, OH
Compressor Equipment

- Current Practice
- Current Efficiency Improvement Options
- Promising New Technologies
- Potential R & D Needs
Current Compressor Equipment

- Traditional low-speed reciprocating
 - High Compressor η over wide ratio range
 - Engine η varies with vintage/retrofit
- Centrifugal η very dependent on ratio
- Newer high-speed reciprocating
 - High Engine η
 - System losses often limit Compressor η

Source: INGAA
Low-Speed Reciprocating Compressor Equipment

- High reliability
- High compressor efficiency over wide ratio range
- Very flexible (wide flow and ratio range)
- Large no. of legacy integral engine compressors
 - New units no longer manufactured
 - Engine efficiency varies with vintage and retrofit level
 - Various engine retrofits reduce emissions & increase efficiency
- New motor-driven units available
 - High (installed) capital cost
- Good for baseline or flow swings

Source: ACI Services
Centrifugal Compressor Equipment

- High reliability
- Gas turbine and electric motor drives
- Compressor efficiency is very dependent on ratio & flow
 - Recycle and suction throttling control are inefficient
 - Other control options (e.g., variable IGVs) not commonly used
- Unit efficiency increases with size
- Best suited for baseline operation

Source: Solar Turbines
High-Speed Reciprocating Compressor Equipment

• High engine efficiency and low exhaust emissions
• Current product manufacturing and support
• Reasonably good compressor efficiency over wide ratio range
• Very flexible (wide flow and ratio range), but less than slow speeds
• System pressure losses from pulsation control reduce efficiency
• Pulsation and mechanical natural frequency control is challenging
• Good for baseline or flow swings

Source: ACI Services
Current Efficiency & Leakage Improvement Options
Reciprocating Compressors

• Improved valves & piston rings
• Better monitoring systems to improve maintenance & reduce internal losses
• Improved rod packing, leakage tracking, better maintenance
• Intelligent PLC automatic unloading control to eliminate suction throttling & bypass (except as last resort)**
• Cylinder upgrades/right-sizing (new piston/liners or replacement)
• Cylinder upgrades for maintainability (replace problematic vertically split type)

** not common in upstream applications (low hanging fruit?)
Current Efficiency & Leakage Improvement Options
Centrifugal Compressors

• Run centrifugals for base loading and utilize recips for swings (reduces need for recycle and suction throttling)
• Re-aero/right sizing
• A few units with variable inlet guide vanes
• Dry gas seals

Source: Solar Turbines
Promising New Technologies / Products

Technology Readiness Level
7 – 9 In use
5 - 7 Potential Research Needs
Promising New Technologies
Reciprocating Compressors

- Step-less capacity control without compromising valve performance
 - Head end automatic variable volume clearance pockets in field trials (ACI, Ariel, D-R, Hoerbiger) TRL8-9
- End deactivation with minimal losses (various alternatives) TRL9
 - reduced deactivated parasitic loss & activated valve loss (ACI)
- Smart control systems for optimal automatic operation/unloading
 - eRCM Express (ACI) TRL9
- Higher efficiency valves TRL8-9
 - CP high-strength contoured plate (Hoerbiger)
 - high-speed poppet (ACI, CECO)
 - radial poppet (ACI)
 - Straight flow (Zahroof SF)
 - Magnum HammerHead (D-R)

Source: ACI Services
Promising New Technologies

Reciprocating Compressors

• More efficient pulsation control (reduced pressure & power losses)
 • better time-based analysis techniques for more accurate designs and enable optimization (SWRI, Beta, others) \(\text{TRL8-9} \)
 • tunable sidebranch absorber (active pulsation cancellation) \(\text{TRL9} \)
 • pulsation attenuation networks (passive cancellation) \(\text{TRL7-8} \)
 • dynamic variable orifice (adjustable damping) \(\text{TRL7} \)
 • virtual orifice (pulsation cancellation) \(\text{TRL7} \)
 • others reported in GMRC/DOE program 2008-2011 \(\text{TRL6-7} \)

• Efficient cooler fan control \(\text{TRL8-9} \)
 • Variable speed w/o VFD (Voith)
Promising New Technologies
Centrifugal Compressors

• Ways to extend flow range and broaden peak efficiency zone
 • avoid, or at least minimize, recycle TRL9
 • automatically variable inlet guide vanes TRL8-9
 • automatically variable diffuser vanes TRL7-8
• Hermetically sealed compressors TRL8-9
 • spin-off from sub-sea development
 • no leakage, but limited low ratio capacity
Reciprocating Compressor Equipment & Systems
Potential R & D Needs

• Performance augmentation networks $\textit{TRL7-8}$
 • Based on success of tuned engine manifolds
 • Potential to reduce compression horsepower $>>10\%$
 • Optimize compressors as a system (like engines)
 • tuned manifolds
 • optimal crankshaft phasing
 • integrate with cylinder design
• Better damping materials & devices for reducing response to mechanical natural frequencies $\textit{TRL5}$
 • pipe clamps
 • equipment mounts
 • vibration (and noise) absorbing coatings
Reciprocating Compressor Equipment & Systems
Potential R & D Needs

- Piston rod packing improvements TRL7-9
 - better maintenance (smart monitoring of leakage rate)
 - reliable and cost-effective ways to seal the piston rod statically
 - reliable and cost-effective ways to eliminate operating leakage
- Reduce pressure drop at meter stations (replace pulsation bottles and orifices with pulsation cancellation solutions, e.g. PAN) TRL7-8
- Regulation research – incentive/credit for systemized approach to efficiency improvement – e.g., fuel savings; upstream or downstream pressure drop savings (someone else’s problem)
- Linear Motor Recip. Compressor (DOE H2 booster project) – pioneering research, but a long way from pipeline scale TRL3
Centrifugal Compressor Equipment & Systems
Potential R & D Needs & Ideas

• Practical retrofit ways to avoid recycle and operate in high efficiency zone
 • variable IGVs & adjustable diffuser vanes TRL7
 • typically requires OEM involvement
 • system strategies for base loading
• Reduce seal leakage
 • cost-effective vent gas capture and reinjection systems
 • cost-effective N₂ generator and face seal buffer systems
• Hermetically sealed compressors
 • scale up to pipeline high-flow/low ratio needs
Compressor Equipment

Questions