Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Workshop

American Gas Association, Washington, D.C.
September 9, 2014

Reuben Sarkar
U.S. Department of Energy
Deputy Assistant Secretary
Sustainable Transportation
EERE Areas of Focus

- **Sustainable TRANSPORTATION**
- **Renewable ELECTRICITY GENERATION**
- **Energy Saving HOMES, BUILDINGS, & MANUFACTURING**
“All of the Above” for Sustainable Transportation

Hydrogen and Fuel Cells

- Efficiency Improvement
- Fuel Diversification
- Domestic & Renewable Sources
- Reduced GHG

Vehicles

Bioenergy

National Energy Goals & Climate Action Plan
Reduce oil imports by 50% by 2020, compared to 2008
Reduce GHG emissions 17% below 2005 levels by 2020
Natural Gas Use in Transportation Sector is Projected to Grow Exponentially

Transportation is projected as **fastest growing** sector for gas consumption

~12% projected annual growth from 2012 to 2040

Heavy duty trucks - **fastest growing** segment in transportation for NG consumption

>900K stock of vehicles and heavy duty trucks running partially or fully on natural gas by 2040

>100K vehicles running fully on NG

Source: EIA, Annual Energy Outlook 2014
Largest AFV petroleum reductions come from CNG

Significant petroleum savings (~230M GGE) with CNG
NG price stability has an advantage over gasoline and diesel fuels. CNG low and stable price serve as a powerful market motivator. Domestic truck/bus OEMs now have LNG and CNG models serving important niche markets.
Hydrogen Preview: Fuel Cell Cars are Here

FCEVs on display at North American auto shows.

Honda Fuel Cell Electric Vehicle

Hyundai’s first mass-produced Tucson Fuel Cell SUVs arrive in Southern California May 20, 2014

Lease includes H₂ and maintenance.
Program Success in Distributed NG Reforming:

- Completed R&D phase
- Showed H_2 from NG can be competitive with gasoline at high volumes
- Goal < $4/gge by 2020*

*Including delivery and dispensing at the pump

Co-Launched Public-Private Partnership

Mission: To promote the commercial introduction and widespread adoption of FCEVs across America through creation of a public-private partnership to overcome the hurdle of establishing hydrogen infrastructure.

Current partners include (additional in process):
Examples of Challenges for CNG and H₂

Technical Challenges
- Storage (on-board vehicles and at stations)
- Delivery
- Compression
- Dispensing
- Cost and Reliability

Market Challenges
- Infrastructure (station siting, lead times)
- Insufficient part inventories
- Lack of standardization of parts (meters, valves, hoses, nozzles)
- Financing: ROI during early years can be negative, and future demand is difficult to predict

Are there any synergies between CNG and H₂ that can address these challenges?
Efforts to advance the development and use of NG technologies

Clean Air Power

Performance = the base diesel engine
Average duty-cycle diesel substitution factor of 60%.

ANL

Enable >50% petroleum displacement, improved efficiency relative to gasoline base engine and improved power density over comparable CNG port fuel injection technology.

$1M (DOE funded) project + cost share of $250k
Two projects focusing on NG being directly injected and the gasoline being port injected to result in a more efficient way of using NG/gasoline dual fuel.
Workshop Objectives, Goals, Desired Outcomes

Overall Objective:
• Accelerate the use of both natural gas and hydrogen for on road transportation

Goals:
• Identify synergies between natural gas and hydrogen fuels
• Identify key technical and non technical challenges which prevent or delay the widespread deployment of natural gas and hydrogen technologies

Desired Outcomes:
• Identify and prioritize opportunities to address key challenges and synergies between natural gas and hydrogen
• Determine roles and opportunities to partner across both government and industry stakeholders
Thank you