

DOE/BTO Summary Wrap-Up

Meeting on the Software Framework for Transactive Energy

Conducted by PNNL for BTO, and Hosted by Case Western Reserve University

Cleveland, OH

July 23-24, 2014

1 | Energy Efficiency and Renewable Energy

Joseph Hagerman Senior Policy Advisor Building Technologies Office On behalf of DOE/BTO, PNNL held the meetings to:

- Increase awareness of VOLTTRON and the Transactional Network concept by convening stakeholders - including industry members, researchers, software developers and practitioners - to build a community of early adopters.
- Present overview and current/future applications of VOLTTRON, outline use cases, and showcase its potential to address several optimizations, such as buildings' energy efficiency, EV charging, and renewables integration.
- Get frank feedback from VOLTTRON users on strengths and weakness of the platform.

Meeting Agenda – July 23

- DOE/BTO Purpose and Context
- Motivation for Transaction-Based Reference Platform
- VOLTTRON Introduction /History
- VOLTTRON Technical Overview/Features

Developing Applications of VOLTTRON: Experience and Lessons Learned

- ORNL Use of VOLTTRON Platform for Advanced Control of Building Equipment
- LBNL Using VOLTTRON Platform for Measuring Savings/Fault
 Detection in Lighting Systems
- PNNL Experience in Developing Apps/Agents for VOLTTRON Platform
- VA Tech VOLTTRON as Platform for Building Energy Management Open Source (BEMOSS) Appy.s. DEPARTMENT OF

- VOLTTRON Development Primer: How to create an application, how to use services
- Demonstration: Virginia Tech Operating System (OS) built on VOLTTRON for Energy Management in Buildings
- A Community of VOLTTRON Users: An Introduction
- A Community of VOLTTRON Users: Suggestions for Development
- The Case Western Reserve University Campus Grid
- Suggestions for DOE/BTO Proposed Future Development and Commercialization of VOLTTRON Platform

Industry and Academic Participants

Key Meeting Takeaways - Programmatic

1. Need to increase VOLTTRON outreach efforts

- a. IEEE and ACM (Virginia Tech Professor S. Rahman offered to host Volttron session at <u>Feb IEEE meeting</u> in DC if desired by DOE)
- b. Sponsor Annual User Development meeting piggybacking on existing meetings/conferences
- 2. Need **detailed roadmap for VOLTTRON development**, with public input
- 3. Need to present a **straw man for VOLTTRON community structure**, and then get public input on it.
- 4. Need to **define scope of VOLTTRON Nation**. Is it very broad (Transactive Energy), narrower (Buildings to Grid) or narrower still (Building Controls).
- 5. Need to **quantify the potential economic value** (business case) of services VOLTTRON would create
- 6. DOE should always support foundational development but industry will drive future enhancements and specialized/proprietary agents
- 7. Clarify VOLTTRON licensing models. DOE intent is open source.
- 8. Need **VOLTTRON security enhancement plan (**Agent-to-agent security as they are added; Consider how/where implemented). DEPARTMENT OF _____ Energy Efficiency &

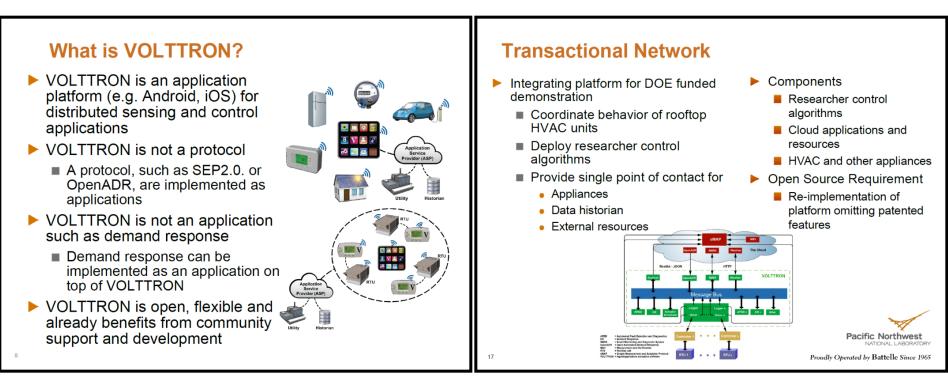
Key Meeting Takeaways – Technical (1 of 2)

- VOLTTRON has been developed to be very general-purpose, but standards would help application developers. Some of these standards may fall out of other ongoing research. Including apps to platform services, app to app, and common data/representation models.
- Set of simple, clear, specific agents (including a non-Python agent) which demonstrate how to work with platform services. These agents could also serve as templates for building more complex agents.
- 3. The **contributed applications need more documentation** to understand what they are doing. These complex applications provide more realistic examples of operation than the simple example agents.
- 4. Re-examination of publish/subscribe with a scalable methodology. As part of this, seek comments and peer review and test alternative methods.
- 5. Allow agents to communicate peer-to-peer in cases where data (especially large amounts) does not need to be shared with other agents on the message bus.
- 6. Implement a Directory Service for capability discovery so that it is easier for apps to discover devices, services, and other apps.

7. Robust developer tool suite needed

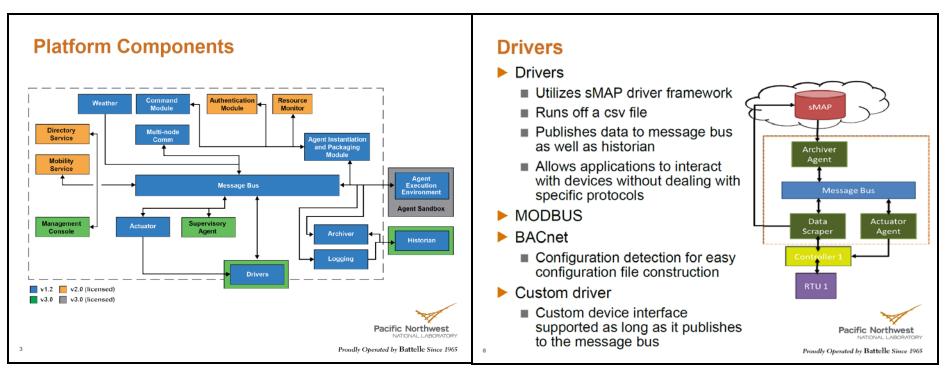
- 7. Unit Tests
- 8. Ability to easily debug agent communication
- 9. Library of simulated devices to facilitate running apps w/o access to real devices
- 10. Algorithm Toolbox for common algorithms benefitting multiple apps
- 8. Provide a clear distinction between capabilities of the base platform and applications which are built on top of it, e.g. Virginia Tech's system.
- 9. There is market interest in embedding VOLTTRON in consumer products and routers. Investigate how this might be done.
- **10. Determine how to distribute products built on VOLTTRON** (Appstore concept). First instance would be VA Tech OS
- **11. Build an automated configuration capability** to enable:
 - 7. Plug and Play
 - 8. Auto discovery and configuration
 - 9. Auto mapping of device points to a common data format

Presentations at the Meeting


DOE/BTO Purpose and Context (Hernandez, PNNL)

Technology Solution Attributes	VOLTTRON [™] Platform
 Open, flexible and modular software platform Ease of application development Interoperable across vendors and applications Hides power and control system complexities from developers Object oriented, modern software development environment Language agnostic. Does not tie the applications to a specific language such as Java Broad device and control systems protocols support built-in ModBUS, BACNet, DNP3, and others Multiple types of controllers and sensors Low CPU, memory and storage footprint requirements Supports non-Intel CPUs Secure Security libraries and cryptography built-in Manage applications to prevent resource exhaustion (CPU, memory, storage) Robust against denial-of-service (e.g., does not crash when scanned via network 	 VOLTTRON is a software platform for next generation distributed control applications for integrating buildings and power grid Proven through simulation, prototypes and field deployments Flexible, modular and language-agnostic Open-source, easy to extend, already being used by external collaborators Maintain security and manage platform resources Services for applications to find each other VOLTTRON Platform Python Java Other Agent Execution Environment Capability Discovery Resource Monitoring and Control Secure Multi-agent Execution Platform
mapper)Supports modern application development environments	Capability Discovery Resource Monitoring and Control
5 Energy Effciency & Renergy Effciency & Renergy Effciency &	10 ENERGY Energy Efficiency & Renewalch Energy

- The group recognized challenges associated with integrating variable renewable generation with existing control solutions
- Group acknowledged VOLTTRON solution attributes were correct if truly open-source/agent-based
- A financial settlement capability is an additional necessary component
- An appropriate long term management plan for software platform is critical for market adoption

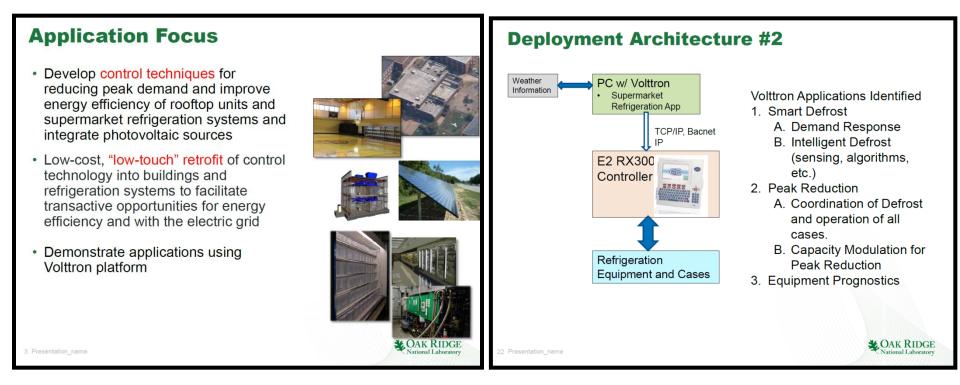

VOLTTRON Introduction & History (Haack, PNNL)

- Project History
 - Started as internal PNNL R&D aimed at enabling distributed sensing and control
 - Demonstrated in simulation, hardware testbed, and deployment at instrumented home
 - Re-implemented and released open source for Transactional Network project
 - Integrating platform for applications, devices, and remote resources
- Project Future
 - Integrate PNNL IP features into current version of software U.S. DEPARTMENT OF
 - Enhance capability of software

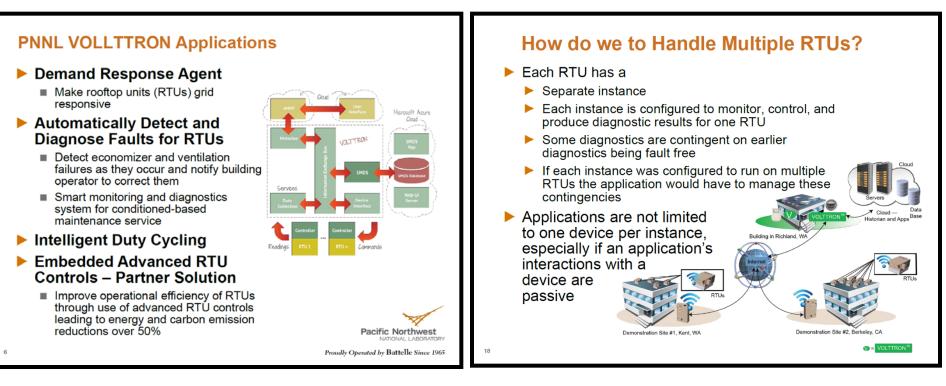
VOLTTRON Technical Overview & Features (Carpenter, PNNL)

Objectives

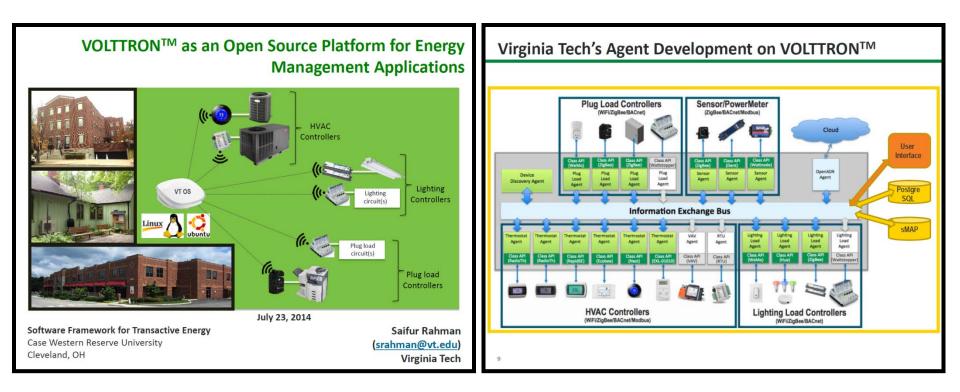
- Lower barrier of entry for app developers to work w/ devices to achieve TE goals
- Provide platform allows apps to receive data from devices, perform analysis, and send control signals regardless of underlying protocol used by those resources
- Utility classes and examples to ease app development Needs
- Need standardization on data/agent communication
- Management console for ease of platform management
- Residential deployment to demonstrate capabilities


Developing Applications of VOLTTRON: LBNL (Brown)

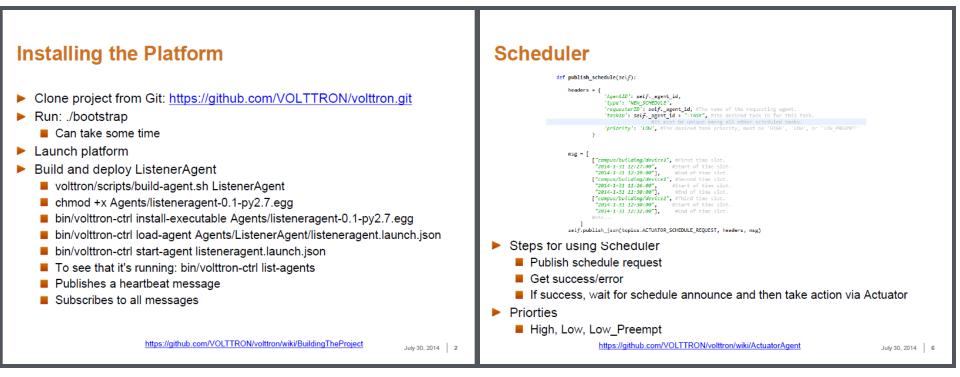
- Demonstrated fault detection and diagnostics for lighting control systems
- Demonstrated automated measurement and verification in Volttron platform
- Focus on integration of Volttron with lighting systems and whole-building metering
- Offered suggestions for future transactional network improvements in standard interfaces to building systems and utility communications


Developing Applications of VOLTTRON: ORNL (Kuruganti)

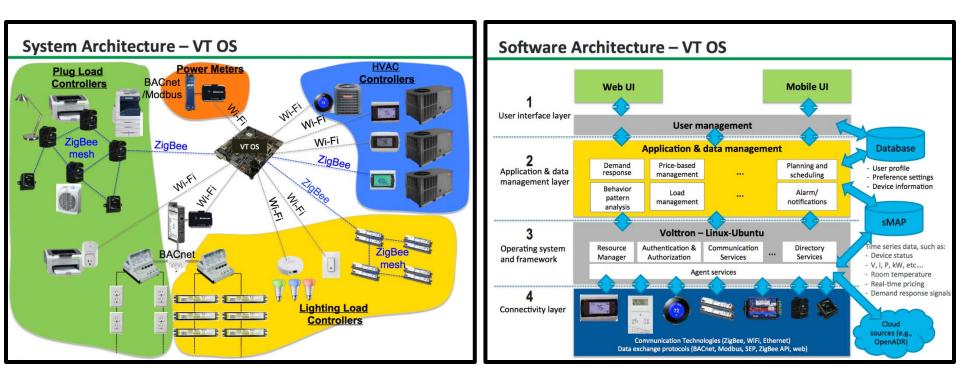
- Demonstrated peak reduction of multi-RTU using retrofit control app
- Prototyped demand defrost of refrigeration system
- Focus on advanced control techniques via low-touch retrofits for adding transactive capability to building equipment
- Summarized ORNL experience re VOLTTRON plusses and minuses


Developing Applications of VOLTTRON: PNNL (Katipamula)

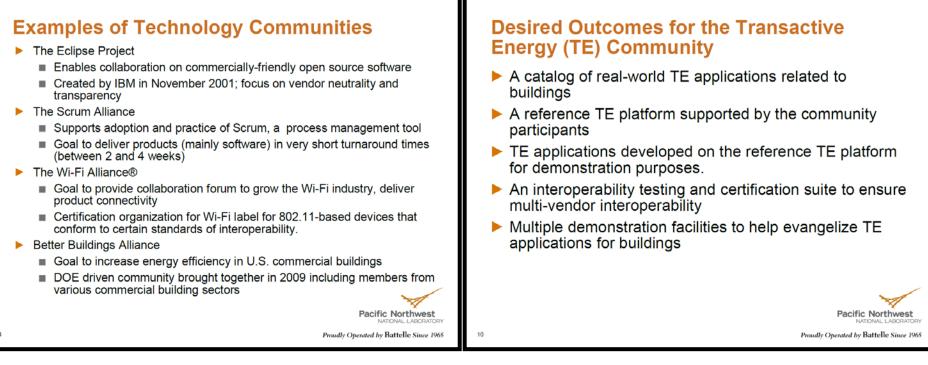
- Demonstrated how apps/agents built to work with VOLTTRON
- Highlighted integration development tools and plug-ins necessary to develop apps
- Conducted walk down on app development using Automated Fault Detection/Diagnostics app
- Listed VOLTTRON services the AFDD app uses and how those services used
- Outlined lessons learned in development/deployment of apps
- Summarized PNNL experience re VOLTTRON plusses and minuses


Developing Applications on VOLTTRON: VA Tech (Rahman)

- Open Source, open architecture for third party developer contribution
- Plug-and-Play feature allows the discovery of diverse sensors/controllers
- Interoperability allows working with different communication protocols
- Scalability allows expansion of the system as needs grow in the building


VOLTTRON Development Primer: How to create an application, how to use services (Haack & Carpenter, PNNL)

- Development Walkthrough
 - Starting platform, building, deploying agents
 - Overview of example agent
 - Examination of Base Agent
 - Service interaction example
- Next steps
 - Follow-up webinars for topics of interest


Virginia Tech OS built on VOLTTRON for Building Energy Management (Pipattanasomporn and Kuzlu, VA Tech)

- VT OS is an open source, open architecture platform built on VOLTTRON[™].
- VT OS allows all supported devices to be discovered automatically as they are deployed in buildings.
- VT OS allows integration of different load controllers from different vendors, using different communication technologies and data exchange protocols.

A Community of VOLTTRON Users: Suggestions for Development (Katipamula, PNNL)

- Outlined what a technology community does, including various examples and possible structures of technology community
- Listed desired outcomes of Transactive Energy community
- Listed potential initial actions for community, if formed
- Provided an example community that PNNL recently created GridLab-D (Grid Analytics Association that is managed by NRECA)

