

Tribal Leader Forum: Waste-to-Energy Introduction

July 24, 2014

Randy Hunsberger

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Presentation Outline

Waste-to-energy Introduction

Feedstocks

Recycling

Conversion Products and Pathways

Major Equipment

WTE Economics and Opportunities

Waste-to-Energy Introduction

The issues, for much of the world:

- Waste disposal is a major expense
- High energy prices
- Limited landfill space

The opportunity

- Waste as an alternative fuel source through
 - Landfill gas methane collection
 - Waste to energy

Benefits

- Reduces electricity cost
- Helps to meet renewable energy mandates
- Improves waste management and reduces land filling
- Environmental benefits

WTE Highlights

Waste-to-energy (WTE) is considered renewable energy

WTE offers firm, dispatchable power

There are no commercial WTE projects that have been constructed in the US using advanced generation technologies (e.g. gasification/plasma, pyrolysis)

WTE projects receive income from energy sales and tipping fees

WTE Introduction--QUIZ

List three benefits of WTE

- Reduces electricity cost
- Helps to meet renewable energy mandates
- Improves waste management and reduces land filling
- + Other environmental benefits

An accurate feedstock resource estimate is the basis for estimating the performance and economics of a biomassor waste-to-energy project.

Biopower Pyramid

Capacity Sizing Chart

Tons per day at various heat rates and energy contents to generate 1 MW gross

MSW Properties

g Municipal solid waste (MSW) is heterogeneous mixture

Refuse Derived Fuel (RDF)

RDF is feedstock derived by processing of municipal solid waste

The American Society for Testing and Materials has established classifications RDF-1 to RDF-7

- RDF-1: Municipal solid waste used as a fuel in as-discarded form
- RDF-2: MSW processed to coarse particle size, with or without ferrous metal separation, such that 95% by weight passes through a 6-inch square mesh screen.
- RDF-3: Shredded fuel derived from MSW and processed for the removal of metal, glass, and other entrained in-organics. The particle size of this material is such that 95% by weight passes through a 2-inch square mesh screen. Also called "fluff" RDF.

Resource Assessment

How much waste is available?

What types of waste are available?

- Municipal waste
- Commercial / Industrial Waste
- Tires
- Sewage sludge
- Wood waste
- Medical waste

Who controls the waste and where it goes?

How far away is the waste?

Project economics

Equipment sizing and energy production

Feedstock characteristics and availability

Typical recycled materials

- Plastics
- Glass
- Metals
- Miscellaneous

Paper

High-grade paper

- White copy and computer paper
- Letterhead
- White notebook paper
- White envelopes

Mixed office paper

- Colored paper
- File folders
- Sticky notes
- Boxboard (such as cereal boxes)
- Junk mail
- Catalogues
- Paper bags
- Packing/wrapping papers
- Greeting cards

Newspaper

- Coated paper
- Magazines

Glossy paper

Corrugated cardboard

Plastics

#1 – PET (Polyethylene terephthalate)

Soda bottles

•Bottles for liquor, liquid cleaners, detergents, and antacids

#2 – HDPE (High-density polyethylene)

- •Water, juice, and milk jugs
- •Bottles for laundry detergent, fabric softener, lotion, motor oil, and antifreeze

#3 - PVC or vinyl (Polyvinyl chloride)

•Bottles for cooking oil, salad dressing, floor polish, mouthwash, and liquor

•"Blister packs" used for batteries and other hardware and toys

#4 - LDPE (Low-density polyethylene)

•Grocery bags

- Trash bags
- •Film products

#5 – Polypropylene

- •Packaging such as yogurt containers, shampoo bottles, and margarine tubs
- •Cereal box liners, rope and strapping, combs, and battery cases

#6 – Polystyrene

- •Styrofoam coffee cups, food trays, and "clamshell" packaging
- •Some yogurt tubs, clear carry-out containers, and plastic cutlery
- •Foam applications [Note: Polystyrene used for foam applications is sometimes called EP or •expanded polystyrene]

#7 – Other

- •Applications that use some of the above six resins in combination
- •Collection of individual resins as mixed plastics

Clear glass

Green glass

Brown glass

Metals

Aluminum

- Cans
- Foil

Tin-Coated Steel Containers

• Food packaging (e.g., canned food)

Bimetal Containers

• Example includes tin-plated steel cans with an aluminum "pop top"

Non-Ferrous Metals

• Scrap metal that does not contain iron (e.g., copper and brass)

Ferrous Metals

- Iron
- Iron-containing metal scrap
- Steel

Lead-acid batteries

Household batteries

Recycling—QUIZ—Which of these can also be used for energy?

Typical recycled materials • Paper

- Plastics
- Glass
- Metals
- Miscellaneous

Primary Bioenergy Products

Waste-to-energy Pathways

Thermochemical Technologies

Thermochemical technologies include:

- Combustion
- Gasification (and plasma gasification)
- Pyrolysis

Combustion

Thermal conversion in an atmosphere of excess oxygen

Commercial technology

Inefficient but reliable

Emissions need to be controlled

Large water requirements

Combustion Overview

In the US, 88 existing commercial facilities in 25 states combust 26.3 million tons of MSW per year.

Typical minimum for economic feasibility is 500 tons per day (tpd)

Typical Mass Burn WTE Layout

Gasification Technologies

National Renewable Energy Laboratory

Plasma Reactor

Biochemical Conversion Technologies

Landfill-Gas-to-Energy (LFG or LFGtE)

Anaerobic Digestion (AD)

Landfill-Gas-to-Energy

Anaerobic Digestion

Two-phase thermophilic anaerobic digestion of MSW, Anyang City, S. Korea From CADDET Technical Brochure No. 66

Breaks down organic material in absence of oxygen

• Sewage, food waste, waste grease, organics from waste stream

Produces low to medium Btu biogas and residues

Emerging technology in U.S, widespread in Europe, Asia

Limited cost data available at this time

Possible opportunity at sewage treatment plant

Scalable

WTE Pathways--QUIZ

Materials Handling

Pit and Grapple Arrangement

Trommel Screen

Used to separate materials by size

Primarily for WTE pre-sorting

Sloping Grate Furnace

Roller Grate Furnace

Reciprocating Grates

Reciprocating Grate Furnace

Stepped Hearth Grate

QUIZ—What is this?

Roller Grate Furnace

National Renewable Energy Laboratory

State of WTE Technology - large

Large scale (>300 tpd) combustion units commercially viable

- Almost all commercial power systems are combustion/steam turbine
- Efficiencies in 15% 30% range power only, (60%-70% CHP)
- ➢ 550-650 kWh per ton MSW
- Stokers and fluidized bed
- ➤ 1-110 MW (average is ~20)
- Installed costs \$4,000/kW
- Smaller systems (< 5 MW) challenging economics</p>
- Residual material (ash) about 10% by volume, 20% by weight
- LCOE = \$0.06 \$0.20/kWh (depends on tipping fee revenue)

Innovation for Our Energy Future

State of WTE Technology - small

Small scale (10-300 tpd) advanced conversion technologies in demonstration phase

- More efficient than combustion, 30%- 40%
- Syngas (CO + H2 + CH4) can be used in IC engines, gas turbines, steam turbines or to make liquid fuels
- Installed cost \$6,000 per kW, and up
- Residual material:
 - about 10% by volume
 - 20% by weight
- LCOE: \$0.15 \$0.20+ per kWh
- (LCOE depends on tipping fee revenue)
- Reduced water usage
- 600-800 kWh per ton MSW

IES 30 ton per day unit Mecca, CA

State of WTE Technology - mobile

Expeditionary scale (0.5-3 tpd) WTE entering limited demonstration phase

- Demonstration projects beginning at Ft Irwin, Aberdeen Proving Grounds, Edwards AFB
- 250-600 kWh per ton MSW

Community Power Corp: MEWEPS System

WTE Economics

WTE facilities are expensive to construct

• Emissions control equipment requirements are a primary driver

Operation and maintenance costs are relatively high, approximately \$100/MWh of generation

• MSW fuel is hard on system components, requiring replacement earlier than systems using other fuels

Revenue is generated from selling electricity and from fees charges for the disposal of solid waste (tipping fee)

- Due to economies of scale, larger plants (>500tpd) can compete with local electricity rates and tipping fees
- Tipping fees in the U.S. range from \$15/ton in Oklahoma to \$92/ton in Vermont

Evaluating WTE Opportunities

Waste stream

- Large-scale, commercially proven, systems require >300 ton per day (tpd) of MSW
- Small-scale, yet-to-be proven systems can operate with less feedstock, but economics are marginal

Potential sites

- WTE is typically favorable in cities, islands, and other areas with land constraints, due to high costs to build new landfills
- Tipping fees over \$70/ton could support WTE

Energy price

• Over \$.12/kWh is favorable for WTE

Air Emissions and Ash

By-product of conversion process	15-25% by weight of MSW and 5-15% of the volume	
Fly ash (top)	Particles and residues removed from flue gas and pollution control devices	
Bed ash (bottom)	Silica (sand, quartz), CaO, Fe_2O_3 , and Al_2O_3	
	Potential re-use	¢.
	Concrete, bricks, artificial reefs	
Modern air pollution control technology removes most contaminants		
Scrubbers, baghouse, ESP, etc.		
Varies by WTE technology, fuel composition, and controls used		
	process Fly ash (top) Bed ash (bottom) Modern air pollution control technology removes most contaminants Scrubbers, baghouse, ESP, etc. Varies by WTE technology, fuel composition, and	process5-15% of the volumeFly ash (top)Particles and residues removed from flue gas and pollution control devicesBed ash (bottom)Silica (sand, quartz), CaO, Fe2O3, and Al2O3Potential re-use Concrete, bricks, artificial reefsModern air pollution control technology removes most contaminantsScrubbers, baghouse, ESP, etc.Varies by WTE technology, fuel composition, and

References

Lauber J.D., Morris M.E., Ulloa P., Hasselriis F., 2006. Local waste-toenergy vs. long distance disposal of municipal waste. In: AWMA Conference, New Orleans, Louisiana, June 21.

Themelis N.J., 2007. Thermal review, Waste Management World (July-August), 37-45.

Kaplan P.O., Decarolis J., Thorneloe S., 2009. Is It Better To Burn or Bury Waste for Clean Electricity Generation?, Environmental Science Technology, 43, 1711-1717.

National Renewable Energy Laboratory Energy Integration Systems / DESI Group 15013 Denver West Parkway, Golden, CO 80401

Randy Hunsberger <u>randolph.hunsberger@nrel.gov</u>