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Main objectives of the project

Objectives: Modeling control mechanisms and economic value for
aggregated load flexibility
Evaluation: Theory and validation by simulations

2 / 42



Residential/personal appliances potential

Observation: Costs include that of recruiting customers
The “Internet of things” will make personal appliances easy to
monitor and control (think of app “WhatsOn?”)

Our tasks for this year model is the information needed to:
1 Deliverable 1: Ex-ante plan and Real-time control (EV + TCL)
2 Deliverable 2: Pricing a specific flexible use (EVs)
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Decision model

Ex-ante decisions:
How much power B(t) to purchase and how much ancillary
service capacity M (t) to offset costs in the forward market
Solve for the minimum cost forward:

min
B(t),M(t)

∑
t∈Ω

E{CF(L(t),B(t),M (t))} s.t. L(t) ∈ LDR(t), (1)

where LDR(t) the feasible set of loads ex-ante

Real-time decisions:
Control L(t) to follow the schedule (B(t),M (t))
Minimize its real-time cost (here myopic):

min
L(t)

CR(L(t),B(t),M (t)) s.t. L(t) ∈ LRT−DR(t) (2)

where LRT−DR(t) is the feasible set of loads in real time
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Part I

Modeling DR flexibility
Ex-ante and in Real-time
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Existing aggregate ex-ante models

Tank model: Fill the flexible demand tank by the end of the day
[Lambert, Gilman, Lilienthal,’06], [Lamadrid, Mount, Zimmerman,
Murillo-Sanchez, ’11],[Papavasiliou, Oren ’10]

Proposed for the system operator planning does not well capture
inter-temporal constraints

Detailed model: Model each individual appliance constraints
[Joo,Ilic,’10], [Huang, Walrand, Ramchandran,’11], [Foster,Caramanis,’13]

Good for local planning but not scalable for large populations
Quantized Population Models: Cluster appliances and derive an
aggregate occupancy model [Chong85],[Mathieu,Koch, Callaway,’13]
and our work...

Good for both!

Categories covered (deliverables)
1 Deferrable loads with dead-lines X
2 Interruptible rate constrained EVs with deadlines and V2G X
3 Thermostatically Controlled Loads X
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Unified modeling approach

1 State-space parametric description of the set Li(t) of possible
load injections of specific appliance i

2 Event-driven: Appliances are available for control after ti with
initial state Si ; (arrival is ai(t) = u(t − ti) unit step)

3 Divide and conquer: Define a representative set Lv
q(t) for a given

appliances cathegory (v), quantizing possible parameters (q) and,
if continuous, quantize the state (x)

4 Aggregate and conquer: Describe total flexibility Lv(t) using:
Aggregate arrival and state occupancy

aq
x (t) =

∑
i∈Pv,q

δ(Si − x)ai(t), nq
x (t) =

∑
i∈Pv

E

δ(xi(t)− x)ai(t)

Aggregate control knob

dq
x,x′(t) = # appliance moved from x to x ′ before time t

∂dq
x,x′(t) = dq

x,x′(t + 1)− dq
x,x′(t) = # ... at time t
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Non-interruptible Appliances - Individual Flexibility

Loads that can be shifted within a time frame but cannot be
modified after activation, e.g., washer/dryers
xi(t) ∈ {0, 1} = state of appliance i (waiting/activated) → initial
state always 0
∂xi(t) = xi(t + 1)− xi(t) = state change
i appliance load = gi(t), if activated at time 0
Laxity (slack time) of χi

Li(t) ={Li(t)|Li(t) =
∑
τ

∂xi(τ)gi(t − τ), xi(t) ∈ {0, 1},

xi(t) ≥ ai(t − χi), xi(t − 1) ≤ xi(t) ≤ ai(t)}.

In English:
Load = load shape shifted at time of change of state (off to on)
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Non-interruptible Appliances - Aggregate Flexibility

Appliances clustered: quantized pulses gq(t) and deadlines χq

aq(t) = arrivals and dq
0,1(t) ≡ dq(t) = activations in cluster q

aq(t) =
∑

i∈Pv,q

ai(t) , dq(t) =
∑

i∈Pv,q

xi(t)

Lv(t)=
{

L(t)|L(t)=
Qv∑

q=1
gq(t) ? ∂dq(t), dq(t) ∈ Z+

dq(t) ≥ aq(t − χq), dq(t − 1) ≤ dq(t) ≤ aq(t)
}
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Generalized to more complex cases....

Hybrid systems: control of the switching events. Discrete switching
xi(t) ∈ {0, 1, ..,n} + continuous dynamics {gi,x(t)}n

x=1

Dimmable Lighting, joint washer/dryer cycle, etc.
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Continuous state: EVs- Individual Flexibility

States are quantized in the set Xi = {0, 1, . . . ,Ei}
The possible charging rates in the set ∂Xi (possibly only one!)
The deadline for full charge is χi

Li(t) = {Li(t)|Li(t) = ∂xi(t)ai(t), xi(ti) = Si ,

xi(t) ∈ X , ∂xi(t) ∈ ∂Xi , xi(χi) = Ei}

In English:
Load (power) = rate of change in state of charge xi(t) (energy)

The parameters distinguishing Li(t) are the battery capacity Ei ,
the possible charging rates ∂Xi and the deadline χi
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Continuous state: EVs- Aggregate Flexibility

Lv(t) =
{

L(t)

∣∣∣∣∣L(t) =
Qv∑

q=1

∑
(x, x′) ∈ Xq ,

(x′ − x) ∈ ∂X

(x ′ − x)∂dq
x,x′(t)

∂dq
x,x′(t) ∈ Z+,

∑
xX q

∂dq
x,x′(t) ≤ nq

x (t)

∀t ≥ χq and x < Eq → nq
x (t) = 0

nq
x (t) = aq

x (t) +
∑

x′∈X
[dq

x′,x(t − 1)− dq
x,x′(t − 1)]

}

Heterogenous (X q, ∂X q, χq)→ different clusters q = 1, . . . ,Q
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Other classes

Rate-constrained battery change, e.g., V2G

Interruptible e.g., pool pump, EV fixed rate charge
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TCLs - Individual Flexibility

xi(t) temperature in comfort band [x∗i − Bi/2, x∗i + Bi/2] in the
time window [χs

i , χ
e
i ) of the day.

TCL cycles on and off bi(t) ∈ {0, 1} within a time frame [ts
i , te

i )
larger or equal than [χs

i , χ
e
i ). TCL i arrival and departure events:

ai(t) = u(t − ts
i ), ri(t) = u(t − te

i ).

For unit i we have:

Li(t) =
{

Li(t)|∂xi(t) = −kixi(t) + αi(t) + bi(t)ξi ,

bi(t) ∈ {0, 1},Li(t) = bi(t)Ξi ,∀t ∈ [ts
i , te

i )

|xi(t)− x∗i | ≤ Bi/2, ∀[t]24H ∈ [χs
i , χ

e
i )
}

where ξi = rate of heat gain Btu/h, Ξi is ξi in KW /h and the
ambient noise E[αi(t)] = xamb(t)ki , xamb(t) = ambient temperature
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TCLs - Randomized control

Since αi(t) is random, switching the control bi(t) ∈ {0, 1} changes
the probability that the appliances move from one state x to x ′

Pi(x ′|x; t; bi(t)) = Prob
(
αi(t) = x ′ − x(1− ki)− bi(t)ξi

)
.

We need to cluster based on these probabilities

Pi(x ′|x; t; b) 7→ Pq(x ′|x; t; b), q = 1, . . . ,Qv

Occupancy of a temperature bin includes those OFF + those ON

nq
x (t) = nq

x,0(t) + nq
x,1(t)

= aq
x (t)−rq

x (t) +
∑

x′∈Sq

Dq
x′,x(t − 1)−Dq

x,x′(t − 1)

Dq
x,x′(t) = # appliance moved from x to x ′ at time t

E{Dq
x,x′(t)|n

q
x (t)} = nq

x,0(t)Pq(x ′|x; t; 0) + nq
x,1(t)Pq(x ′|x; t; 1)

25 / 42



TCLs - Aggregate Flexibility

The comfort band constraint translates into

∀|x − x∗q| > Bq/2 → Pr(nq
x (t) = 0) ≥ η,

where η is close to one (violations rare)
Aggregate flexibility of heterogeneous TCLs

Lv(t) =
{

L(t)|L(t) =
Qv∑

q=1

∑
x∈Sq

Ξqnq
x,1(t), nq

x (t) =
1∑

b=0
nq

x,b(t),

nq
x (t)=aq

x (t)−rq
x (t) +

∑
x′∈Sq

Dq
x′,x(t − 1)−Dq

x,x′(t − 1) ,

E{Dq
x,x′(t)|n

q
x (t)} =

1∑
b=0

nq
x,b(t)Pq(x ′|x; t; b);

∀x : |x − x∗q| > Bq/2, ∀[t]24H ∈ [χs,q, χe,q)

→ Pr(nq
x (t) = 0) ≥ η

}
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Real time TCL control: simplified model

The complexity grows linearly with # of quantization points but
exponentially with # of parameters
Simplified myopic policies based on EV deadlines:
Least Laxity First (LLF) and Earliest Deadline First (EDF)
[S. Caron and G. Kesidis, ’10], [S. Chen, Y. Ji, and L. Tong, ’12], [A.
Subramanian, M. Garcia, A. Dominguez-Garcia, D. Callaway, K. Poolla, and
P. Varaiya, ’12], [G. O’ Brien and R. Rajagopal, ’13]

TLC deadlines based control: TCL communicates quantized
deadline instead of temperature state and switch value
(τi(t), bi(t))

τi(t) = 1
ki

ln
(

xi(t)− bi(t)Ξi
ki
− αi(t)

ki

x∗i − (−1)bi(t) Bi
2 − bi(t)Ξi

ki
− αi(t)

ki

)
.

An EDF scheduler maximizes residual future flexibility
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Regulation through TCL loads

Ex-ante:
To follow the AGC signal the aggregator must be able to

1 Increase/decrease demand by a certain step of variable height m
from the baseline

2 Hold the demand at that value for a certain duration ξ

We evaluated ξ to be the 97 % quantile of the zero-crossing time
from historical AGC signals (19 min. based on PJM signals)
Capacity estimate for the population 2.05 MWs

M ′ =
Q∑

q=1
min

t
M q(t)

where M q(t) is the maximum deviation m from the baseline that
a load in cluster q can tolerate at time t with 0.05m error
(determined simulating the response of each cluster using Lq(t))
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Regulation through TCL loads
Real Time the TCLs are controlled for 6 h based on clustering
deadlines (60 clusters)
Temperature is Jan 29th 2012 in Davis;
Ξi = ξi ∼ U ([2000, 4000]) Btu/h, ki =∼ U ([50, 200]) W/C, x∗i ∼
U([69, 75]), Bi ∼ U ([2, 4]) F
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Figure : Simulated response of the TCL population (10000) to regulation
signals and three 2 ton A/C units temperatures. The y-axis range i=
comfort band.
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Part II

Pricing specific flexible uses
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Price design for specific flexible use

Figure : Differentiated Pricing and Scheduling (top) and Dynamic Retail
Pricing (bottom).

Both schemes harness a subset of the true flexibility of demand

LDR(t) ⊆ L(t)
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DR #1: Dynamic Retail Pricing
Dynamic retail prices x(t) = [πr(t), . . . , πr(t + T )] ∈ Z(t) (set of
regulated prices in Z(t))
Possible load shapes:

LDR(t) =
{

L(t)|L(t) = f (t; x(t)),x(t) ∈ Z(t)
}

(3)
Here f (.) is the price-response of the population

f (t; x(t)) =LI (t) +
V∑

v=1

∑
ϑ∈T v

[
av

ϑ(x(t))︸ ︷︷ ︸
unobservable

quantized price response - known︷ ︸︸ ︷
argmin

L(t)∈Lv
ϑ

(t)

T∑
t=1

πr(t)L(t)
]

Price response only observable in aggregate and not for different
clusters → learning av

ϑ(x(t)) from limited observations
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DR #2: Pricing for Direct Load Scheduling (DLS)
An aggregator hires appliances and directly schedules their load
We are one of the first to look at the economic side of DLS
Set of differentiated prices based on plasticity

xv(t) = {xv
ϑ(t),∀ϑ ∈ T v}

But how can we have voluntary participation in DLS?

Differentiated discounts xv(t) from a high flat rate → incentives
Appliances choose to participate based on incentives → av

ϑ(xv(t))

LDR(t) = LI (t; xv) +
V∑

v=1

∑
ϑ∈T v

observable︷ ︸︸ ︷
av

ϑ(xv(t)) Lv
ϑ(t).

Reliable: aggregator observes av
ϑ(xv(t)) after posting incentives

and before control - no uncertainty in control unlike retail pricing
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Dynamic Cluster-specific Incentives for DLS

Cluster parameters ϑ of 2 types: intrinsic + customer chosen
Cluster appliances based on intrinstic characterics, e.g. gq(t)
Customer picks the mode m, e.g., deadline χq, comfort band Bq

A set of incentives xv,q
m (t),m = 1, . . . ,M v,q for each cluster q and category v

Generalizes deadline differentiated price [Kefayati, Baldick, ’11], [Bitar, Xu ’13]
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Incentive design

Category v and cluster q → intrinsic properties of loads
Independent incentive design problem for different categories v
and clusters q → Let’s drop q, v for brevity
Optimal incentives given uncertainty about customer reservations
to be recruited?
The closest problem in literature: “optimal unit demand pricing”

Customers valuation for different modes correlated (value of EV
charge with 1 hr laxity vs. value of EV charge with 2 hrs laxity)
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The Incentive Design Problem

Aggregator designs posted incentives

x(t) = [x1(t), x2(t), . . . , xM (t)]T ,

From recruitment of flexible appliances, the aggregator saves
money in the wholesale market (utility):

u(t) = [U1(t), . . . ,UM (t)]T

Aggregator payoff when interacting with a specific cluster
population:

Y (x(t); t) =
∑

m∈M

Payoff of mode m︷ ︸︸ ︷
(Um(t)− xm(t))

∑
i∈P(t)

indicator of mode m selection︷ ︸︸ ︷
ai,m(x(t); t) .

ai,m(x(t); t) = 1 if load i picks mode m given incentives x(t)
Goal: maximize payoff Y (x(t); t)
Problem: we don’t know how customers pick modes
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Probabilistic Model for Incentive Design Problem
At best we have statistics → Maximize expected payoff
Probability of load i picking mode m:

Pi,m(x(t); t) = E{ai,m(x(t); t)}.

Incentives posted publically - Individual customers not important
Define mode selection average probability across modes:

Pm(x(t); t) =
∑

i∈P(t) Pi,m(x(t); t)
|P(t)|

p(x(t); t) = [P0(x(t); t), . . . ,PM (x(t); t)]T → what we need

Maximize expected payoff across cluster population

max
x(t)�0

E

 ∑
m∈M

(Um(t)− xm(t))
∑

i∈P(t)

ai,m(x(t); t)

 =

max
x(t)�0

known︷ ︸︸ ︷
(u(t)− x(t))T

unknown︷ ︸︸ ︷
p(x(t); t)
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Kringing method

Mode selection probability p(x(t); t), the expected recruitment
utility u(t), and the population size |P(t)| are daily periodic
functions, i.e., ∀t = iH + h, h = 0, . . . ,H − 1, i ∈ Z that come
from a multivariate Gaussian distribution

p̂(x; h) = Bhf(x) + z(x),

Find the point where the probability of improving the payoff
beyond its current best value T is highest, i.e.,

max
x

Q
(

T − |P(h)|(u(h)− x)TBhf(x)
σ

)
,

where σ2 = |P(h)|2(u(h)− x)TΣ(x)(u(h)− x) and Q(.) denotes
the Gaussian Q function.
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Numerical results

Stats based on 620 PHEV residential charge events, demand [0, 5
kWhs], 10 clusters, made rate flexible, simple probabilistic model set
to match increasing risk as people get close to their travel time

Figure : The performance of 620 PHEVs in following regulation signals.

Regulation service capacity prices are taken to be equal to the ISO
New England’s day-ahead market clearing prices in the Maine load
zone on September 1st
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Numerical results - cont.

Table : Comparison of the 4 studied incentive design schemes

Method LSE profit daily # recruited and payment
Bayesian - Uniform $493 707 EVs - 3.2c per EV
Bayesian - Gaussian $281 555 EVs - 1c per EV
Black box - kriging $653 560 EVs - 2c per EV
Upper bound $774 708 EVs - 2.1c per EV
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Publications accepted this year

M. Alizadeh, Y. Xiao, A. Scaglione, and M. van der Schaar, “Dynamic
Incentive Design for Participation in Direct Load Scheduling
Programs”, IEEE Journal on Selected Topics in Signal Processing -
Special Issue on Smart Electric Power Grid, To appear, 2014.
M. Alizadeh, A. Scaglione, A. Applebaum, G. Kesidis, and K. Levitt
“Reduced-order Load Models for Large Populations of Flexible
Appliances” Power Systems, IEEE Transactions on, to appear, 2014.
M. Alizadeh, H.T. Wai, A. Scaglione, A. Goldsmith, Y. Fan, and T.
Javidi, “The Charge and Travel Problem in Electric Transportation
Networks”, Invited paper, 52nd Allerton Conference, Oct. 2014, to
appear.
M. Alizadeh, A. Scaglione, A. Goldsmith, and G. Kesidis, “Capturing
Aggregate Flexibility in Demand Response”, Invited paper, IEEE 53rd
Annual Conference on Decision and Control (CDC), Dec. 2014, to
appear.
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Future work and directions

Deliverables and schedule for activities under FY14 funding
Interface between appliances and aggregator for EVs and TCLs X
Pricing of specific flexibility of EV X

Early thoughts on follow-on work for funding in FY15
Exploring methods to cluster the inter-temporal constraints of
solar and wind power to model net-generation flexibility
Studying congestion in future coupled infrastructures - Traffic
and EV charging
Comparing Dynamic Pricing and Price Differentiated Scheduling
via game theoretic analysis
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