Development of Advanced Stochastic Unit Commitment Formulation for Management of Uncertainty

C. Lindsay Anderson
M. Gabriela Martínez
Laura Lindley Tupper

August 6, 2014
Overview

- Background & Objectives
- Current Progress
 - Chance-constrained unit commitment
 - Scenario generation and reduction
- Conclusions & Future Directions
Objective

Development of a solution for SCUC that will be

- Flexible: able to include uncertain renewable resources in a realistic way, integrate with other tools
- Robust: provide optimal (or ϵ-optimal) solutions
- Scalable: applicable to reasonably-sized systems in practical computation time
Objective

Development of a solution for SCUC that will be

- Flexible: able to include uncertain renewable resources in a realistic way, integrate with other tools
- Robust: provide optimal (or ϵ-optimal) solutions
- Scalable: applicable to reasonably-sized systems in practical computation time

Combination of formulation and algorithm implementation
In 2013, we proposed to investigate chance-constrained formulations that will

- ease the requirement for perfectly binding constraints,
- require constraints to be met with some large probability
- ensure scalability through separation of stochastic complexity and system complexity
In 2013, we proposed to investigate chance-constrained formulations that will

- ease the requirement for perfectly binding constraints,
- require constraints to be met with some \textit{large} probability
- ensure scalability through \textit{separation of stochastic complexity and system complexity}

Replicating the reliability requirements of the power system operator
These objectives led to two primary goals previously described:

1. Use modestly-sized test cases, to filter approach to most promising

2. Investigate methods for reduction of scenario sets and approximation of excluded scenarios
These objectives led to two primary goals previously described:

1. Use modestly-sized test cases, to filter approach to most promising → Gabriela Martínez

2. Investigate methods for reduction of scenario sets and approximation of excluded scenarios
Goals

These objectives led to two primary goals previously described:

1. Use modestly-sized test cases, to filter approach to most promising → Gabriela Martínez
2. Investigate methods for reduction of scenario sets and approximation of excluded scenarios → Laura Tupper
Stochastic Models
Gabriela Martínez
Stochastic Models

1. Chance-constrained UC Models
 - Quantile-region MIP approximation
 - Quantile-based Relaxation

2. Stochastic Two-stage Models
 - Risk-neutral two-stage UC Model (Expected recourse actions)
 - Risk-averse two-stage UC Model (Conditional value-at-risk recourse actions)

Goals: formulate numerically tractable stochastic models based on data – scenarios that capture statistical properties of renewable generation, and possibly load
The general form of the optimization model considered:

- C_G total cost of thermal-generation
- P_G^t total thermal power generation at time t
- L^t total load
- P_r^t total renewable generation at time t
- T scheduling horizon

$$\min C_G(P_G),$$

s.t. $P_G^t \geq L^t - P_r^t, t = 1, \ldots, T$

$$P_G \in \mathcal{C}_G.$$

Set of deterministic decisions \mathcal{C}_G (operational constraints of thermal units). $L - P_r \in \mathbb{R}^T$ is a random vector.
The general form of the optimization model considered:

- C_G total cost of thermal-generation
- P_G^t total thermal power generation at time t
- L^t total load
- P_r^t total renewable generation at time t
- T scheduling horizon

$$\min C_G(P_G),$$
$$\text{s.t.} \mathbb{P}(P_G^t \geq L^t - P_r^t, t = 1, \ldots, T) \geq \pi$$
$$P_G \in \mathcal{C}_G.$$

Distribution of data $L - P_r$ is represented with scenarios.
Chance-constrained Model

Introduction

The general form of the optimization model considered:

- C_G total cost of thermal-generation
- P_G^t total thermal power generation at time t
- L^t total load
- P_r^t total renewable generation at time t
- T scheduling horizon

\[
\begin{align*}
\min & \quad C_G(P_G), \\
\text{s.t.} & \quad F_{L-P_r}(P_G) \geq \pi \\
& \quad P_G \in \mathcal{C}_G.
\end{align*}
\]
The general form of the optimization model considered:

\[
\begin{align*}
\text{min} & \quad C_G(P_G), \\
\text{s.t.} & \quad P_G \geq z \\
& \quad F_{L-P_r}(z) \geq \pi \\
& \quad P_G \in \mathcal{C}_G.
\end{align*}
\]
The general form of the optimization model considered:

\[
\min C_G(P_G),
\]
\[
\text{s.t.: } P_G \geq z
\]
\[
z \in \mathcal{Z}_\pi
\]
\[
P_G \in \mathcal{C}_G.
\]

Stochastic-Feasible Set: \(\mathcal{Z}_\pi := \{ z \in \mathbb{R}^T : \mathbb{P}(L - P_r \leq z) \geq \pi \} \).

Difficulty: \(\mathcal{Z}_\pi \) – handle unknown distribution, and numerical tractability.
The general form of the optimization model considered:

- \(C_G \) total cost of thermal-generation
- \(P_G^t \) total thermal power generation at time \(t \)
- \(L^t \) total load
- \(P_r^t \) total renewable generation at time \(t \)
- \(T \) scheduling horizon

\[
\begin{align*}
\min & \quad C_G(P_G), \\
\text{s.t.:} & \quad P_G \geq z \\
& \quad z \in \mathcal{Z}_\pi \\
& \quad P_G \in C_G.
\end{align*}
\]

Stochastic-Feasible Set: \(\mathcal{Z}_\pi := \{z \in \mathbb{R}^T : \mathbb{P}(L - P_r \leq z) \geq \pi \} \).

Difficulty: \(\mathcal{Z}_\pi \) – handle unknown distribution, and numerical tractability. Approximate \(\mathcal{Z}_\pi \) based on theoretical results about its structure.
Geometry

- Structure of \mathcal{Z}_π depends on the distribution of $\mathbf{L} - \mathbf{P}_r$
- In general, it is a non-convex set, $\mathcal{Z}_\pi = \bigcup \{ v_j + \mathbb{R}_+^T \}$
Geometry

- Structure of \mathcal{Z}_π depends on the distribution of $\mathbf{L} - \mathbf{P}_r$
- In general, it is a non-convex set, $\mathcal{Z}_\pi = \bigcup \{v_j + \mathbb{R}^T_+\}$
 - If $T = 1$,
 $$\mathcal{Z}_\pi = \{z \in \mathbb{R} : \mathbb{P}(\mathbf{L} - \mathbf{P}_r \leq z) \geq \pi\} = \{z = v_\pi + \mathbb{R}_+\}$$
Structure of \mathcal{Z}_π depends on the distribution of $\mathbf{L} - \mathbf{P}_r$

In general, it is a non-convex set, $\mathcal{Z}_\pi = \bigcup \{v_j + \mathbb{R}_+^T\}$

If $T = 1$,

$\mathcal{Z}_\pi = \{z \in \mathbb{R} : \mathbb{P}(\mathbf{L} - \mathbf{P}_r \leq z) \geq \pi\} = \{z = v_\pi + \mathbb{R}_+\}$
Geometry

- Structure of \mathcal{Z}_π depends on the distribution of $\mathbf{L} - \mathbf{P}_r$
- In general, it is a non-convex set, $\mathcal{Z}_\pi = \bigcup \{v_j + \mathbb{R}_+^T\}$
 - If $T = 1$, $\mathcal{Z}_\pi = \{z \in \mathbb{R} : \Pr(\mathbf{L} - \mathbf{P}_r \leq z) \geq \pi\} = \{z = v_\pi + \mathbb{R}_+\}$
Geometry

- Structure of \mathcal{Z}_π depends on the distribution of $\mathbf{L} - \mathbf{P}_r$
- In general, it is a non-convex set, $\mathcal{Z}_\pi = \bigcup \{v_j + \mathbb{R}^T_+\}$
 - If $T > 1$, more combinations to consider to find the quantile-vectors v
 - Example, $T = 2$: $\mathbf{L} - \mathbf{P}_r = (\mathbf{L}^1 - \mathbf{P}_r^1, \mathbf{L}^2 - \mathbf{P}_r^2)$
Geometry

- Structure of \mathcal{Z}_π depends on the distribution of $\mathbf{L} - \mathbf{P}_r$
- In general, it is a non-convex set, $\mathcal{Z}_\pi = \bigcup \{v_j + \mathbb{R}^T_+\}$
 - If $T > 1$, more combinations to consider to find the quantile-vectors v
 - Example, $T = 2$: $\mathbf{L} - \mathbf{P}_r = (\mathbf{L}^1 - \mathbf{P}_r^1, \mathbf{L}^2 - \mathbf{P}_r^2)$

$$F_{\mathbf{L} - \mathbf{P}_r}(z) \geq \pi$$

$z = v_j + y$
Geometry

- Structure of \mathcal{Z}_π depends on the distribution of $\mathbf{L} - \mathbf{P}_r$
- In general, it is a non-convex set, $\mathcal{Z}_\pi = \cup \{ v_j + \mathbb{R}_+^T \}$
- If $T > 1$, more combinations to consider to find the quantile-vectors v

 Example, $T = 2$: $\mathbf{L} - \mathbf{P}_r = (\mathbf{L}_1 - \mathbf{P}_r^1, \mathbf{L}_2 - \mathbf{P}_r^2)$

$$F_{\mathbf{L} - \mathbf{P}_r}(z) \geq \pi$$

$$v_\pi = (v^1_\pi, v^2_\pi)$$

$$F_{\mathbf{L}_1 - \mathbf{P}_r^1}(v^1_\pi) \geq \pi$$

$$F_{\mathbf{L}_2 - \mathbf{P}_r^2}(v^2_\pi) \geq \pi$$
Geometry
General properties

\[F_{L-P_r}(z) \geq \pi \]

- \(v_\pi = (v_\pi^1, v_\pi^2) \)
- \(F_{L^1-P_r^1}(v_\pi^1) \geq \pi \)
- \(F_{L^2-P_r^2}(v_\pi^2) \geq \pi \)

- Bounded
 \[v_\pi \leq z, \ v_\pi \leq v_j \]

- Extreme Points
 \[F_{L-P_r}(v_j) \geq \pi \]
 \[v_1 = (v_1^1, v_1^2) \]
 \[v_4 = (v_4^1, v_4^2) \]

* finite realizations
Optimization problem

\[\min C_G(P_G), \]
\[\text{s.t. } P_G \geq z \]
\[z \in \mathbb{Z}_\pi \]
\[P_G \in \mathcal{C}_G. \]
Optimization problem

\[\min C_G(P_G), \]
\[\text{s.t.: } P_G \geq z \]
\[z \in \mathcal{Z}_\pi \]
\[P_G \in \mathcal{C}_G. \]

Optimal solution: \(z = v_k. \)
Convexification \(z = \sum_{k=1}^{K} \lambda_k v_k. \)
Optimization Problem

$$\min C_G(P_G),$$

s.t.: $P_G \geq z$

$$z \in \mathbb{Z}_\pi$$

$$P_G \in \mathcal{C}_G.$$

Optimal solution: $z = v_k$.

Convexification $z = \sum_{k=1}^{K} \lambda_k v_k$.

Observation: v_j unknown.
Optimization Problem

\[
\begin{align*}
\text{min } & \quad C_G(P_G), \\
\text{s.t.} & \quad P_G \geq z \\
& \quad z \in Z_\pi \\
& \quad P_G \in C_G.
\end{align*}
\]
Optimal solution: \(z = v_k \).
Convexification \(z = \sum_{k=1}^{K} \lambda_k v_k \).

Observation: \(v_j \) unknown

Approximate red region with a sample and estimate \(v_\pi, v_i \)
Optimization Problem
Approximation

$$\min C_G(P_G),$$

s.t: $$P_G \geq z$$

$$z \in \mathcal{H}_\pi$$

$$P_G \in \mathcal{C}_G.$$
Quantile-based set \mathcal{H}_π

For $t = 1, \ldots, T$, let $V^t = L^t - P_r^t$. Let V_1, \ldots, V_S be a sample of V^t.

- Ordered sample $V_1 \leq V_2 \leq \cdots \leq V_S$
- Estimate bound: \hat{v}_π^t
- Estimate coordinate: \hat{v}_r^t
Quantile-based set \mathcal{H}_π

For $t = 1, \ldots, T$, let $V^t = L^t - P^t_r$. Let V_1, \ldots, V_S be a sample of V^t.

- Ordered sample

 $V[1] \leq V[2] \leq \cdots \leq V[S]$

- Estimate bound: \hat{v}_π^t

- Estimate coordinate: \hat{v}_τ^t

- Simple estimator:

 $k = [\pi S], V[k]$ (problem: biased)
Quantile-based set \mathcal{H}_π

For $t = 1, \ldots, T$, let $V^t = L^t - P^t_r$. Let V_1, \ldots, V_S be a sample of V^t.

$S = KN$

- **Ordered sample**

 $V[1] \leq V[2] \leq \cdots \leq V[S]$

- **Estimate bound**: \hat{v}_π^t

- **Estimate coordinate**: \hat{v}_τ^t

- **Jackknife estimator**

Sample: $V[[\pi S]]$

Sample\section: $V[[\pi (S - N)]]$

Jackknife: $V[[\pi S]] - \frac{K-1}{K} \sum_{k=1}^{K} V[[\pi (S - N)]]$
Quantile-based set \mathcal{H}_π

For $t = 1, \ldots, T$, let $V^t = L^t - P^t$. Let V_1, \ldots, V_S be a sample of V^t.

$S = KN$

Spacing $i = 1, \ldots, S - 1$

$sV_i = V_{[i+1]} - V_{[i]}$,

$k = \arg\max_{i \geq \lceil \pi S \rceil + 1} sV_i$.

$\rho = \frac{\lceil \pi S \rceil + k + 1}{S}$.

Sample: $V_{[\pi S]}$

Sample section: $V^k_{[\pi (S-N)]}$

Jackknife: $V_{[\pi S]} - \frac{K-1}{K} \sum_{k=1}^{K} V^k_{[\pi (S-N)]}$

Estimate bound: \hat{v}_π

Estimate coordinate: \hat{v}_ρ
Quantile-based set \mathcal{H}_π

For $t = 1, \ldots, T$, let $\mathbf{V}^t = \mathbf{L}^t - \mathbf{P}^t_r$. Let V_1, \ldots, V_S be a sample of \mathbf{V}^t.

Define the vectors, $\tau = 1, \ldots, T$

$$\hat{\mathbf{v}}_\tau = \begin{cases} \hat{\mathbf{v}}_\tau^t & t \neq \tau, \\ \hat{\mathbf{v}}_\tau^\rho & t = \tau. \end{cases}$$

$$\mathcal{H}_\pi = \{ v = \sum_{\tau=1}^{T} \beta_\tau \hat{\mathbf{v}}_\tau, \beta_\tau \geq 0, \sum_{\tau=1}^{T} \beta_\tau = 1 \} + \mathbb{R}_+^T$$
Quantile-based set \mathcal{H}_π

For $t = 1, \ldots, T$, let $V^t = L^t - P^t_r$. Let V_1, \ldots, V_S be a sample of V^t.

If $\pi \approx 1$ then

$$\left[\pi S \right] \approx S,$$

$$\rho \approx S$$

$$\hat{v}^t \approx \hat{v}^t$$

$$\mathcal{H}_\pi = \hat{v}_\pi + \mathbb{R}_+^T$$
Numerical Method

- **UC convex-relaxation model**
 \[
 \min C_G(P_G), \\
 \text{s.t.} P_G \geq v \\
 v \in \mathcal{H}_\pi \\
 P_G \in C_G.
 \]

- **Dual decomposition**
 \[
 \mathcal{D}(\lambda) = \mathcal{D}_G(\lambda) + \mathcal{D}_v(\lambda) \\
 \mathcal{D}_G(\lambda) = \min_{P_G \in C_G} C_G - \langle \lambda, P_G \rangle \\
 \mathcal{D}_v(\lambda) = \min_{v \in \mathcal{H}_\pi} \langle \lambda, v \rangle
 \]

- **Subgradient (inexact)**
 \[
 d = v - P_G
 \]
Numerical Method

- UC convex-relaxation model
- The approximation \mathcal{H}_π introduces inexact objective values and subgradients
- Numerical method: proximate bundle method

\[d^k = v^k - P^k \]
Numerical Method

- UC convex-relaxation model
- The approximation \mathcal{H}_π introduces inexact objective values and subgradients
- Numerical method: proximate bundle method

\[d^k = v^k - P_G^k \]
Numerical Method

- UC convex-relaxation model
- The approximation \mathcal{H}_π introduces inexact objective values and subgradients
- Numerical method: proximate bundle method
Numerical Method

- UC convex-relaxation model
- The approximation \mathcal{H}_π introduces inexact objective values and subgradients
- Numerical method: proximate bundle method
Numerical Method

- UC convex-relaxation model
- The approximation \mathcal{H}_π introduces inexact objective values and subgradients
- Numerical method: proximate bundle method
Numerical Method

- UC convex-relaxation model
- The approximation \mathcal{H}_π introduces inexact objective values and subgradients
- Numerical method: proximate bundle method
Algorithm

Stochastic input: scenarios of $\mathbf{L} - \mathbf{P}_r = (\mathbf{L}^t - \mathbf{P}_r^t, t = 1, \ldots, T)$

- Construct \mathcal{H}_π from scenarios:

 Bound: $\hat{v}^t_\pi, t = 1, \ldots, T$,
 Coordinates: $\hat{v}^t_\rho, t = 1, \ldots, T$.

 \(\hat{v}_\tau, \tau = 1, \ldots, T \), represent risk-level π

- Solve the dual of the UC convex-relaxation model with *Proximal Bundle*.

 \[
 (\bar{\lambda}, \bar{P}_G, \bar{v}) \in \mathbb{R}_+^T \times \mathcal{C}_G \times \mathcal{H}_\pi,
 \]
 \[
 (\bar{\lambda}, \bar{P}_G, \bar{v}) \text{ is } \epsilon\text{-optimal solution}
 \]

- Primal-feasible recovery: Inexact Augmented Lagrangian heuristic as in

Proximal Bundle Algorithm

- **Stopping criterion:** if $A_k < \text{tol}$ stop; otherwise continue.
- **Iteration k:** $J_k \subset \{1, \ldots, k\}$, $(A(\lambda^j), d^j), j \in J_k$
- **Dual model:** $\phi^k(\lambda) = \min_{j \in J_k} A(\lambda^j) + \sum_{t \in T} d^{t,j} (\lambda^t - \lambda^{t,j})$
- **Master problem:** $\max_{\lambda \geq 0} \phi^k(\lambda) - \frac{1}{2t_k} \| \lambda - \gamma^k \|^2$
- **Inexact measure:**

 $\delta^k = \varphi^k - A(\gamma^k)$, \quad $\alpha_k = \| \gamma^k - \lambda^{k+1} \| / t_k$,

 $\beta_k = t_k \alpha_k^2 + \delta^k$, \quad $A_k = \max\{\alpha_k, \beta_k\}$.

 If $\delta^k + \beta_k > 0$ then increase t_k go to “Master”; otherwise continue.

- **Compute:** $D_G(\lambda^{k+1})$, $D_v(\lambda^{k+1})$, and d^{k+1}
- **Proximal point:** If $A(\lambda^{k+1}) \geq A(\nu^k) - a(A(\gamma^k) - \phi^k(\lambda^{k+1}))$ then $\gamma^{k+1} = \lambda^{k+1}$; otherwise $\gamma^{k+1} = \nu^k$

 Set $J_{k+1} = \{k + 1\} \cup \{j \in J_k : \mu^k_j \neq 0\}$, $k := k + 1$ go to “Stopping criterion”.

If $\delta^k + \beta_k > 0$ then increase t_k go to “Master”; otherwise continue.
Results

Test-system of 100 thermal units. Generated sample for wind-generation, NREL pv-generation sample, NYC load sample. Linux machine Intel®Core i5, 4 GB RAM. Python, PYOMO, CPLEX.

- H_π generation time

<table>
<thead>
<tr>
<th>S</th>
<th>π</th>
<th>0.8</th>
<th>0.9</th>
<th>0.95</th>
<th>0.99</th>
<th>0.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1e + 3$</td>
<td>0.16644</td>
<td>0.16284</td>
<td>0.16283</td>
<td>0.16380</td>
<td>0.16281</td>
<td></td>
</tr>
<tr>
<td>$1e + 4$</td>
<td>0.38818</td>
<td>0.38786</td>
<td>0.38473</td>
<td>0.38599</td>
<td>0.40159</td>
<td></td>
</tr>
<tr>
<td>$1e + 5$</td>
<td>3.06511</td>
<td>3.06647</td>
<td>3.05644</td>
<td>3.03444</td>
<td>3.03745</td>
<td></td>
</tr>
<tr>
<td>$1e + 6$</td>
<td>36.3308</td>
<td>36.0005</td>
<td>35.4912</td>
<td>35.5562</td>
<td>34.9820</td>
<td></td>
</tr>
</tbody>
</table>

- Proximal bundle solution time

- Primal-feasible schedule time
Results

Test-system of 100 thermal units. Generated sample for wind-generation, NREL pv-generation sample, NYC load sample. Linux machine Intel® Core i5, 4 GB RAM. Python, PYOMO, CPLEX.

- \mathcal{H}_π generation time
- Proximal bundle solution time

<table>
<thead>
<tr>
<th>S</th>
<th>π</th>
<th>0.8</th>
<th>0.9</th>
<th>0.95</th>
<th>0.99</th>
<th>0.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e + 3</td>
<td>0.8</td>
<td>288.407</td>
<td>277.155</td>
<td>248.1538</td>
<td>228.030</td>
<td>213.338</td>
</tr>
<tr>
<td>1e + 4</td>
<td>0.9</td>
<td>294.526</td>
<td>272.319</td>
<td>235.641</td>
<td>229.197</td>
<td>211.717</td>
</tr>
<tr>
<td>1e + 5</td>
<td>0.95</td>
<td>290.500</td>
<td>262.473</td>
<td>231.087</td>
<td>222.972</td>
<td>210.498</td>
</tr>
<tr>
<td>1e + 6</td>
<td>0.99</td>
<td>289.534</td>
<td>253.946</td>
<td>239.6616</td>
<td>218.215</td>
<td>207.761</td>
</tr>
<tr>
<td></td>
<td>0.999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Primal-feasible schedule time
Results

Test-system of 100 thermal units. Generated sample for wind-generation, NREL pv-generation sample, NYC load sample. Linux machine Intel®Core i5, 4 GB RAM. Python, PYOMO, CPLEX.

- \mathcal{H}_π generation time
- Proximal bundle solution time
- Primal-feasible schedule time

<table>
<thead>
<tr>
<th>S</th>
<th>π</th>
<th>0.8</th>
<th>0.9</th>
<th>0.95</th>
<th>0.99</th>
<th>0.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1e + 3$</td>
<td>349.615</td>
<td>305.905</td>
<td>260.871</td>
<td>294.778</td>
<td>223.165</td>
<td></td>
</tr>
<tr>
<td>$1e + 4$</td>
<td>335.263</td>
<td>320.730</td>
<td>347.149</td>
<td>310.208</td>
<td>231.084</td>
<td></td>
</tr>
<tr>
<td>$1e + 5$</td>
<td>303.610</td>
<td>344.920</td>
<td>318.462</td>
<td>264.668</td>
<td>227.088</td>
<td></td>
</tr>
<tr>
<td>$1e + 6$</td>
<td>333.292</td>
<td>323.921</td>
<td>301.033</td>
<td>336.169</td>
<td>234.761</td>
<td></td>
</tr>
</tbody>
</table>
UC-DC Flow

\[\mathcal{Z}_\pi := \{ z = (z^1, \ldots, z^T), z^t \in \mathbb{R}^K : \mathbb{P}(P_D^t - P_r^t \leq z) \geq \pi \} \]

\[\mathcal{Z}_\pi \subset \mathbb{R}^{TK}. \]

\(\mathcal{K} = \{1, \ldots, K\}, \mathcal{T} = \{1, \ldots, T\}. \)

\[
\begin{align*}
\min \quad & C(P_G) \\
\text{s.t.} \quad & \sum_{i \in I_k} P_{G_i}^t - \sum_{km} B_{km}(\delta_k - \delta_m) \geq z_k^t, k \in \mathcal{K}, t \in \mathcal{T} \\
& z \in \mathcal{Z}_\pi \\
& |B_{km}(\delta_k - \delta_m)| \leq F_{km}, km \in B_r \\
& P_G \in \mathcal{C}_G
\end{align*}
\]
Approximation UC-DC Flow

\(\mathcal{H}_\pi \subset \mathbb{R}^{TK} \).

Estimators from data: per node, per time. Since \(KT \) is large, we have to use \(\rho = 1 \) for some coordinates.

\[
\begin{align*}
\min & \quad C(P_G) \\
\text{s.t.} & \quad \sum_{i \in I_k} P_{G_i}^t - \sum_{km} B_{km}(\delta_k - \delta_m) \geq v_k^t, k \in \mathcal{K}, t \in \mathcal{T} \\
& \quad \nu \in \mathcal{H}_\pi \\
& \quad |B_{km}(\delta_k - \delta_m)| \leq F_{km}, km \in \mathcal{Br} \\
& \quad P_G \in \mathcal{C}_G
\end{align*}
\]

Dual decomposition: thermal-subproblem, network-subproblem, stochastic-subproblem.
Future work

- Sensitivity analysis
 - other percentile estimators - stability analysis
 - apply contamination techniques - sensibility perturbation distribution function.

- Value of Information
 - probability weight selection for clusters: $||\hat{v}_\tau - \hat{v}^c||$
 - measure performance of representative of clusters

- Tighter MIP formulations for primal-feasible recovery
First-stage. Unit commitment decisions (binary variables)

\[
\begin{align*}
\min & \quad S_{\text{up}}(u_G) + S_{\text{dn}}(v_G) + \mathbb{E}(Q(u, \xi)) \\
\text{s.t.:} & \quad u_G \in S_{\text{up}}, v_G \in S_{\text{dn}}, \\
& \quad \bar{u}_G \in S_{\text{on}}, \bar{v}_G \in S_{\text{off}}, \\
& \quad u := (u_G, v_G, \bar{u}_G, \bar{v}_G) \in S_{\text{lk}}.
\end{align*}
\]

\(u_G\) start-up, \(v_G\) shutdown, \(\bar{u}_G\) on, \(\bar{v}_G\) off.

Second-stage. Power dispatch. \(Q(u, \xi^s)\) optimal value of

\[
\begin{align*}
\min & \quad C(P_G) + V(y) \\
\text{s.t.:} & \quad \sum_{i \in I_k} P_{G_i}^t - \sum_{km} B_{km}(\delta_k - \delta_m) + y_k^t = L(s)_k^t - P_r(s)_k^t, \\
& \quad k \in K, t \in T \\
& \quad |B_{km}(\delta_k - \delta_m)| \leq F_{km}, km \in B r \\
& \quad P_G \in C_G(u)
\end{align*}
\]
Stochastic Two-stage Models

- First-stage. Unit commitment decisions (binary variables)

\[
\begin{align*}
\min & \quad S_{\text{up}}(u_G) + S_{\text{dn}}(v_G) + \mathbb{E}(Q(u, \xi)) \\
\text{s.t.:} & \quad u_G \in S_{\text{up}}, v_G \in S_{\text{dn}}, \\
& \quad \bar{u}_G \in S_{\text{on}}, \bar{v}_G \in S_{\text{off}}, \\
& \quad u := (u_G, v_G, \bar{u}_G, \bar{v}_G) \in S_{1k}.
\end{align*}
\]

\(u_G\) start-up, \(v_G\) shutdown, \(\bar{u}_G\) on, \(\bar{v}_G\) off.

- Second-stage. Power dispatch. \(Q(u, \xi^s)\) optimal value of

\[
\begin{align*}
\min & \quad C(P_G) + V(y) \\
\text{s.t.} & \quad \sum_{i \in I_k} P_{G_i}^t - \sum_{km} B_{km}(\delta_k - \delta_m) + y^t_k = L(s)_k^t - P_r(s)_k^t, \\
& \quad k \in \mathcal{K}, t \in \mathcal{T} \\
& \quad |B_{km}(\delta_k - \delta_m)| \leq F_{km}, km \in \mathcal{Br} \\
& \quad P_G \in C_G(u)
\end{align*}
\]

CC. \(P_G\) fixed \(v\) some risk-level \(\pi\). TS. \(P_G\) per realization \(s\), minimize expected cost.
Future work

- Scalable numerical approach. Stochastic dual dynamic programming (SDDP approximate dynamic programming technique)

- Value of information
 - Value of stochastic information (VSS) - performance of expected value problem
 - VSS for cluster - measure information loss
 - Use VSS to select number of clusters
Scenario Identification and Reduction

Laurie Tupper
Motivation

The scale and dimensionality of power system models result in problems of computational tractability, so we seek methods to effectively represent uncertainty in low cardinality sets. This is challenging due to

- highly non stationary time-series
- multiple locations, various levels of correlation between locations
- peaks and sudden drops are important
- no clear clusters appear in the data
Outline

- Wind data characteristics (a quick tour)
- k-means clustering
- Alternative distance metric
 - Band Depth
 - Jaccard distance
- k-medoids clustering
- Clustering results
- Conclusions and future directions
Inter-site correlation

Correlation (sometimes lagged) between sites changes over time
Daily behavior

- No consistent daily shape in wind speed
- Days vary widely in mean, amount of variance, smoothness

Wind speeds for high variance (left panel) and low variance (right panel) days for a single site, shows significantly different behaviors.
Annual variation

- Daily behavior does, however, follow annual cycle
- For example:
 - Variance over course of day higher in winter (left panel)
 - More short-term erratic behavior in summer (right panel)
To obtain a typical daily wind speed curve, we fit a generalized additive model of the form

\[W = s(t, d) \]

where \(W \) represents wind speed, and \(s(t, d) \) is some smooth function of time of day, \(t \), and day of year, \(d \).
Figure: Observations from June (red) and December (blue), with the typical daily curves shown as dashed lines.
Figure: The first 15 days of June (black) and December (red) in year 1. Left, original observations; right, typical daily curves removed. The predominant effect is to shift the center of the observations.
K-means clustering

- Straightforward k-means clustering is not effective
- Mean speed of each day dominates cluster assignment
- Aggregating observations gives unrealistically smooth centers
K-means clustering

- Straightforward k-means clustering is not effective
- Mean speed of each day dominates cluster assignment
- Aggregating observations gives unrealistically smooth centers

Unsupervised clustering is convenient for large data sets; alternatives are investigated that can provide more effective scenarios.
Dissimilarity between observations

- recall that k-means clustering is based on the distance between observations in a set
- observations are assigned to sets to minimize total distance within the cluster
- distance is the euclidian distance at each point
- slight differences in mean behavior dominate major differences in shape
The band depth

- Developed by Lopez-Pintado and Romo (2009) to judge typical or atypical shape
- Let x_i represent an observation, x_{it} represent the value at time point t, and X denote the entire set of observations.
- A band b is defined by B observations (x_1, \ldots, x_B) drawn from X; its upper limit is the maximum value of all the observations defining the band:
 \[b_{ut} = \max_{i=1,\ldots,B} x_{it} \]
 and lower limit is the minimum value:
 \[b_{lt} = \min_{i=1,\ldots,B} x_{it} \]
Construction of a band: defining observations and resulting band limits

Original band depth is binary, modified band depth uses proportion of observation within band
Band Depth to Distance

- Clustering algorithms require a distance measure.
- Similarity scores of the band depth are not a distance metric.
- Jaccard distance provides a conversion:
 - Jaccard measure of distance between two sets A_1 and A_2 is given by:
 \[
 1 - \frac{|A_1 \cap A_2|}{|A_1 \cup A_2|}
 \]
Similar observations will fall into each band at similar times.

Each pair of observations \(x \) and \(y \) receives a similarity score for each band \(b \):

\[
J_{xy}^b = \frac{|T^b(x) \cap T^b(y)|}{|T^b(x) \cup T^b(y)|}
\]

where \(T^b(x) \) is the set of times when \(x \) is in \(b \).

This is converted to a distance score for each band:

\[
L_{xy}^b = 1 - J_{xy}^b
\]

The overall distance is the average score over \(b \in U_{xy} \), the set of all bands containing \(x \) or \(y \) at any time:

\[
D_{xy} = \frac{1}{|U_{xy}|} \sum_{b \in U_{xy}} L_{xy}^b
\]
K-medoids

- Can now use any clustering method that requires only a pairwise distance matrix
- One method is the k-medoids clustering algorithm:
 - Iterative but non-hierarchical
 - Similar to k-means, but cluster centers must always be observations from the dataset
 - Begin with random centers
 - Assign all observations to nearest center, then reset centers to most central observation in each cluster
 - Iterate until stable
Comparison of clustering results

- 90 observations, corresponding to the first 15 days of June and December in each year of the dataset
- Six clusters
- First, we apply the distance metric and clustering directly to the wind speed time series
Figure: Clustering results for original wind speed data, with number of June (black) and December (red) observations in each cluster noted on axis. Cluster centers (medoids) are shown in green.
■ Observations from the same month tend to be clustered together, reflecting the different average levels in winter and summer

■ Removing the GAM-based daily shape from each day before clustering gives more balanced groups

■ Adjusted Rand Index between the two classifications of the observations is only 0.126, indicating that classifications are dissimilar
Figure: Clustering results for observations with typical daily shape removed, with number of June (black) and December (red) observations in each cluster noted on axis. Cluster centers (medoids) are shown in green.
Figure: For comparison, using standard k-means with number of June (black) and December (red) observations in each cluster noted on axis. Cluster centers (medoids) are shown in green.
Theoretical questions

- How can we assess effectiveness of these methods?
 - What objective function do we use to judge optimality of cluster assignments?
 - Can we determine how much information is lost by using our chosen representatives?
 - If we do not have a fixed number of clusters, can we find the optimal number?
- Are these methods sensitive to initialization or slight changes in observations?
 - Cluster sizes and assignments
 - Representatives from each cluster
Extensions of the problem

- Spatial component
 - Extension to multiple locations does not incorporate spatial information explicitly
 - Non-constant correlations between sites, with lags depending on spatial information
 - Will increase both complexity and size of the problem
- Different lengths of observations
 - Longer outlook means taking into account correlations between days
The primary conclusions of recent work are as follows:

- Implementation separates the challenge of the stochastic variables from the system complexity, providing computationally scalable solutions.
- The chance-constrained formulation of SCUC provides a balance of risk between expected value methods and robust methods.
- Initial tests show promising computation times for simplified problems.
- Unsupervised clustering can still be implemented and some shortcomings avoided.
- Clustering on a new distance metric, with centroid representatives realizations show more realistic behaviors.
Contributions

Next directions

The next goals for this project are summarized as follows:

- **Stochastic Unit Commitment**
 - Explore other percentile estimators and sensitivity of optimal solution
 - Test scalability of CCP formulation with larger networks
 - Expand formulation to include AC power flow
 - Test value of lost information in two-stage dynamic formulation

- **Scenario Reduction**
 - Estimation of the optimal number of clusters for capturing uncertainty
 - Sensitivity of cluster representative to initial conditions

- Test the sensitivity of solution quality to scenario selection and probability estimates.