Coordinated Aggregation and Control of Distributed Energy Resources

Alejandro D. Domínguez-García
University of Illinois at Urbana-Champaign

Pravin Varaiya and Kameshwar Poolla
University of California, Berkeley

CERTS Program Review
Cornell University
Ithaca, NY
August 5 - 6, 2014
Our Research Group

| Students | Justin Hughes, Jonathan Mather
| | Jared Porter |
| Post-docs | He Hao, Ashutosh Nayyar
| | Borhan Sanandaji |
| Faculty | Alejandro D. Domínguez-García
| | Kameshwar Poolla, Pravin Varaiya|

A. Domínguez-García, K. Poolla, P. Varaiya
DER Coordinated Aggregation and Control
CERTS Program Review
Risk-Limiting Dispatch for Reserve Provision

- Balance variability from renewables with reserves of various types purchased in forward markets

- Portfolio collectively behaves as reliably as dispatchable generation at lower cost
Research Thrusts

Virtual Battery Models for Load Flexibility

- Quantify capability of loads with thermal storage to provide frequency regulation

- These loads can follow dynamic regulation signals better than conventional generators
Aggregated Coordination of DERs for Ancillary Services Provision

- Develop framework for coordinating aggregate response of heterogenous DERs

- Aggregation of DERs enables participation in frequency regulation markets
Part I

Risk-Limiting Dispatch for Reserve Provision
Objective

Develop RLD with transmission constraints, assuming that

- Transmission constraints active in day-ahead dispatch will remain active when reserves to accommodate renewables are included in real-time market

- DC power flow linearized around day-ahead dispatch

Notation:

- Random vectors in uppercase boldface, \((X, Y, D)\)

- Realizations in lowercase boldface \((x, y, d)\)
Model

Given

- Network with \(n \) buses and \(m \) transmission lines
- \(T \) stage RLD: At stage \(t \), the operator buys a vector of power injections (at \(n \) buses) denoted by \(Z_t \)
- Random net load \(D \). Decision \(Z_t \) at \(t \) based on observations \(Y_t \supset Y_{t-1} \). \(D \) is \(Y_T \) measurable
- Total cost is

\[
E\left[\sum_{t=1}^{T-1} c_t(Z_t) + q(Z_t) \right]
\]

\(c_T(\cdot), q(\cdot) \) are convex
- DC network constraint \(\sum_{t=1}^{T} Z_t - D \in \mathcal{P} \), \(\mathcal{P} \) is the convex set of feasible power injections that meet network constraints

[In unconstrained RLD, \(1^T[\sum_{t=1}^{T} Z_t - D] = 0 \)]
Dynamic Programming

- Let \(x_t = \sum_{s=1}^{t-1} z_s \) be power acquired in first \(t - 1 \) markets
- The value function \(V_t \) at stage \(t \) in state \(x_t \) and observations \(y_t \) is given by DP recursion:

\[
V_T(x_T, d) := \min_{P} q(w + d - x_T)
\]

\[
V_t(x_t, y_t) := \min_{z_t} [c_t(z_t) + E[V_{t+1}(x_t + z_t) | Y_{t+1}] | y_t]]
\]

- \(z_t^* = \arg \min_{z_t} \) is Network Risk Limiting Dispatch

Theorem

\(V_t(x_t, y_t) \) is convex in \(x_t \) for each \(y_t \)

Theorem

If \(c_t(z_t) = c_t \cdot z_t \) is linear (constant prices), RLD obeys threshold rule. With Gaussian forecast, threshold can be pre-computed

Current work: algorithms to compute Network RLD
Part II

Virtual Battery Models for Load Flexibility
Load Flexibility Modeling

Definition (Load Flexibility)
Ability to vary power consumption without compromising end function

- Prior work:
 - Aggregation of thermostatically controlled loads (TCLs)
 - Captured by a battery model: simple, intuitive, accurate
 - Model parameters determined by analytical method

- Analytical method does not scale to more complex loads

- Our work:
 - General method to identify battery model parameters for complex loads
 - Based on stress-testing a detailed software model of the physical system
 - Idea illustrated using commercial HVAC system
Commercial HVAC system

Variable air volume with reheat from Kelman and Borrelli, 2011

- **Load flexibility**
 - Achieved by adjusting power consumption of supply fan and cooling coil

- Heating coils usually powered by gas
Building/HVAC System Open-Loop Dynamics

- Nonlinear state-space model:
 \[
 \frac{d}{dt} T_z(t) = g(T_z(t), \dot{m}_z(t))
 \]

- Fan and cooling coil power consumption:
 \[
 P(t) = h(T_z(t), \dot{m}_z(t))
 \]

- Equipment ratings and occupant comfort constraints:
 \[
 \underline{T}_z \leq T_z(t) \leq \overline{T}_z
 \]
 \[
 \underline{\dot{m}}_z \leq \dot{m}_z(t) \leq \overline{\dot{m}}_z
 \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_z</td>
<td>zone temperature vector</td>
</tr>
<tr>
<td>\dot{m}_z</td>
<td>zone cooled-air mass-flow rate vector</td>
</tr>
<tr>
<td>\underline{T}_z, \overline{T}_z</td>
<td>zone temperature lower and upper limit vector</td>
</tr>
<tr>
<td>$\underline{\dot{m}}_z$, $\overline{\dot{m}}_z$</td>
<td>zone cooled-air mass-flow rate lower and upper limit vector</td>
</tr>
</tbody>
</table>
Baseline and Regulation Power

Baseline Power P^o:
- Power consumption to maintain zone temperatures at their midpoint
- Obtained as the steady-state solution of the state-space model:

\[
0 = g(T^m_z, \dot{m}^o_z) \\
\]
\[
P^o = h(T^m_z, \dot{m}^o_z)
\]

Regulation Power $\Delta P(t)$:
- Actual fan and cooling coil power minus baseline power:

\[
\Delta P(t) = P(t) - P^o
\]
Closed-Loop Controller Design

Objective

Control $P(t)$ via $m_z(t)$ to

- track desired power consumption profile P^*
- while respecting equipment rating and occupant comfort constraints

Solution Approach:

- Choose $m_z(t)$ so that $T_z(t)$ is driven to T^m_z
- Cast as an optimization problem:

$$m^*_z(t) = \arg \min_{m_z(t)} \| T_z(t + \Delta t) - T^m_z \|_2$$

subject to

$$T_z \leq T_z(t + \Delta t) \leq \overline{T}_z$$

$$\underline{m}_z \leq m_z(t) \leq \bar{m}_z$$

$$P^*(t) - P^o - \Delta P(t) = 0$$

- $u(t)$: commanded deviation from baseline power
Virtual Battery Model

- **Hypothesis:** Closed-loop Building/HVAC System flexibility can be accurately described by a *virtual battery model*:

\[
\frac{dx(t)}{dt} = -ax(t) - u(t)
\]

\[-C \leq x(t) \leq C\]

\[-n \leq u(t) \leq \bar{n}\]

where \(x(t) \in \mathbb{R}\) is the “state of charge”

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>dissipation</td>
</tr>
<tr>
<td>(C)</td>
<td>up/down capacity</td>
</tr>
<tr>
<td>(n, \bar{n})</td>
<td>discharge/charge rate limits</td>
</tr>
</tbody>
</table>

Objective

Develop a numerical method to identify virtual battery model parameters
System Identification Setup

- Uses detailed model of building/HVAC system dynamics

- **Key idea:** software-based stress tests based on carefully constructed
 \[u_i(t) = P_i^*(t) - P^o, \quad t \geq 0, \quad i = 1, 2, \ldots \]
 - For each \(u_i(t) \), ID algorithm records time, \(\tau_i \), it takes for optimization embedded in the controller to be unfeasible
 - The pairs \((u_i(t), \tau_i) \) are fitted to virtual battery model
Rate Limit Identification Procedure

- Assume that initially comfort constraints are satisfied:

\[T_z \leq T_z(0) \leq T_z \]

- For some \(u_i(t), \ t \geq 0 \), a rate limit constraint is violated if \(\tau_i = 0 \)

[Some finite time is required for an input to affect the state value]

- \(\bar{n} > 0 \ (n > 0) \), but not a priori known upper bounds

- Can perform a one-sided binary search to find \(\alpha \) and \(\beta \) such that

\[
\alpha > \bar{n} \\
\beta > n
\]

- Once obtained, \(\alpha \) and \(\beta \) are used in a binary search procedure to find \(\bar{n} \ (n) \) to arbitrary precision \(\epsilon \)
Capacity and Dissipation Identification Procedure

- For some \(u_i(t) \), \(t \geq 0 \), a capacity limit constraint is violated if \(\tau_i > 0 \)

- For \(i = 1, 2, \ldots, m \), fit \((u_i(t), \tau_i)\), \(\tau_i > 0 \), to battery model

Example

- For \(u_i(t) = u_i \), \(t \geq 0 \), and \(x(0) = 0 \), trajectory of virtual battery model is

\[
x(t) = \frac{u_i}{a} (e^{-at} - 1)
\]

- If \(u_i > aC \), by setting \(x(\tau_i) = -C \):

\[
\tau_i = -\frac{1}{a} \log \left(1 + \frac{-aC}{u_i} \right)
\]

- If \(m \geq 2 \) we can solve for \(a \) and \(C \) by, e.g., using LSE

- Procedure is also suitable for \(u_i(t) \)'s that do not yield explicit expression for \(\tau_i \)
Numerical Simulations

Building/HVAC System Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5</td>
<td>zones</td>
</tr>
<tr>
<td>Δt</td>
<td>varied</td>
<td>s</td>
</tr>
<tr>
<td>c_p</td>
<td>1</td>
<td>kJ/(kg K)</td>
</tr>
<tr>
<td>mc_i</td>
<td>1000</td>
<td>kJ/K</td>
</tr>
<tr>
<td>R</td>
<td>0.1</td>
<td>kW/K</td>
</tr>
<tr>
<td>η_h</td>
<td>0.9</td>
<td>dimensionless</td>
</tr>
<tr>
<td>κ_f</td>
<td>0.065</td>
<td>kW s^2/kg^2</td>
</tr>
<tr>
<td>T_{zi}</td>
<td>21</td>
<td>°C</td>
</tr>
<tr>
<td>T_{zi}</td>
<td>24</td>
<td>°C</td>
</tr>
<tr>
<td>T_{oa}</td>
<td>30</td>
<td>°C</td>
</tr>
<tr>
<td>\dot{m}_{zi}</td>
<td>0.025</td>
<td>kg/s</td>
</tr>
<tr>
<td>\dot{m}_{zi}</td>
<td>1.5</td>
<td>kg/s</td>
</tr>
<tr>
<td>Q_{offset}</td>
<td>0</td>
<td>kW</td>
</tr>
</tbody>
</table>
Numerical Simulations

Selected Inputs

- **Step:** $u(t) = k$, $t \geq 0$
- **Ramp:** $u(t) = kt$, $t \geq 0$
- **RC Step:** $u(t) = k(1 - e^{-5 \cdot 10^{-5} \cdot t})$
- **Monomial:** $u(t) = kt^{1/3}$
- **Regulation signal:**

 $$u(t) = k \cdot \text{regD}(t) \cdot (\text{regD}(t) > 0) + n_- \cdot \text{regD}(t) \cdot (\text{regD}(t) < 0)$$
Step Input

Experimental Data

Best fit bounded above by data

\(\tau (s) \)

\(k \) (kW)
Regulation Signal

Experimental Data

Best fit bounded above by data
Consistent Results for Different Inputs

<table>
<thead>
<tr>
<th>Input</th>
<th>Parameter (a) ((s^{-1}))</th>
<th>Parameter (C) ((\text{kWh}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>(1.003 \times 10^{-4})</td>
<td>2.321</td>
</tr>
<tr>
<td>Ramp</td>
<td>(1.002 \times 10^{-4})</td>
<td>2.324</td>
</tr>
<tr>
<td>RC Step</td>
<td>(1.003 \times 10^{-4})</td>
<td>2.321</td>
</tr>
<tr>
<td>Monomial</td>
<td>(1.003 \times 10^{-4})</td>
<td>2.322</td>
</tr>
<tr>
<td>RegD</td>
<td>(9.966 \times 10^{-5})</td>
<td>2.334</td>
</tr>
</tbody>
</table>
Framework Extensions to Other DER Types

- **Generator-type DERs:**
 - Examples: microturbines, fuel cells
 - Features:
 1. Capacity limited
 2. Ramp constrained
 3. ...

- **Storage-type DERs:**
 - Examples: PEVs, TCLs, flywheels
 - Features:
 1. Capacity limited
 2. Energy limited
 3. Ramp constrained
 4. ...

- More details to come shortly
Part III

Coordination of DERs for Ancillary Services Provision
Coordination of Heterogeneous DERs

- Heterogenous DERs aggregated into a single battery-like model decreases fit quality

- Better strategy is to group resources that are similar, then create multiple reduced-order models

- Aggregating entity can use these models to coordinate DER response for procuring ancillary services:
 - Reactive power for voltage control
 - Active power for up and down regulation [Focus of the rest of the talk]
Types of DERs Considered (I)

- Generator-type DERs:

\[
\frac{d}{dt} x^g(t) = u^g(t)
\]

\[
|u^g(t)| \leq r^g
\]

\[
|x^g(t)| \leq m^g
\]

- \(u^g \): aggregator command
- \(x^g \): regulation power
- \(m^g \): maximum variation around nominal power
- \(r^g \): up/down rate limit
Types of DERs Considered (II)

- **Storage-type DERs:**

\[
\begin{align*}
\frac{d}{dt} x_1^s(t) &= u^s(t) \\
\frac{d}{dt} x_2^s(t) &= -ax_2^s(t) - x_1^s(t) \\
|u^s(t)| &\leq r^s \\
|x_1^s(t)| &\leq m^s \\
|x_2^s| &\leq c
\end{align*}
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u^s)</td>
<td>aggregator command</td>
</tr>
<tr>
<td>(x_1^s)</td>
<td>regulation power</td>
</tr>
<tr>
<td>(m^s)</td>
<td>maximum variation around nominal power</td>
</tr>
<tr>
<td>(r^s)</td>
<td>up/down rate limit</td>
</tr>
<tr>
<td>(x_2^s)</td>
<td>regulation energy</td>
</tr>
<tr>
<td>(a)</td>
<td>dissipation constant</td>
</tr>
<tr>
<td>(c)</td>
<td>energy capacity limit</td>
</tr>
</tbody>
</table>
DER Coordination Problem with Perfect Information

- Find functions u^g and u^s that minimize total cost:

\[
\int_{t_0}^{t_f} \pi^g |x^g(t)| + \pi^s |x^s_1(t)| + \pi^p |\alpha X n(t) - x^g(t) - x^s_1(t)| \ dt.
\]

- Reduces to an LP

- Requires an oracle with complete information of regulation signal
 [Not realistic]
Solution: Model Predictive Control with fixed prediction horizon T:

- **S1.** At time t_0, calculate next $N = \frac{T}{\Delta T}$, $\Delta T > 0$, control actions
- **S2.** Apply only first action
- **S3.** Recalculate based on new data
MPC Solution Requires a Forecast of the Regulation Signal

- Forecast methods considered:
 - Persistence
 - Linear
 - Exponential

- Solutions with different forecast methods benchmarked against oracle
 - PJM regulation signal historical data

![Graph showing regulation signal over time with different forecast methods: Past Measurements, Oracle, Persistence, Linear, Exponential.](image-url)
Numerical Simulations

Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^g</td>
<td>Generator-Type DER Ramp Limit</td>
<td>0.04</td>
<td>MW/s</td>
</tr>
<tr>
<td>m^g</td>
<td>Generator-Type DER Regulation Limit</td>
<td>11.9</td>
<td>MW</td>
</tr>
<tr>
<td>r^s</td>
<td>Storage-Type DER Ramp Limit</td>
<td>0.096</td>
<td>MW/s</td>
</tr>
<tr>
<td>m^s</td>
<td>Storage-Type DER Regulation Limit</td>
<td>7.9</td>
<td>MW</td>
</tr>
<tr>
<td>c</td>
<td>Storage-Type DER Energy Limit</td>
<td>0.28</td>
<td>MWh</td>
</tr>
<tr>
<td>a</td>
<td>Storage-Type DER Dissipation Constant</td>
<td>0</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>π^g</td>
<td>Generator Regulation Price</td>
<td>14.3</td>
<td>$/MWh</td>
</tr>
<tr>
<td>π^s</td>
<td>Storage Regulation Price</td>
<td>42.9</td>
<td>$/MWh</td>
</tr>
<tr>
<td>π^p</td>
<td>Imbalance Price</td>
<td>143</td>
<td>$/MWh</td>
</tr>
<tr>
<td>αX</td>
<td>Regulation Signal Magnitude</td>
<td>18.9</td>
<td>MW</td>
</tr>
<tr>
<td>ΔT</td>
<td>Time Step</td>
<td>20</td>
<td>s</td>
</tr>
<tr>
<td>T</td>
<td>Prediction Horizon</td>
<td>600</td>
<td>s</td>
</tr>
</tbody>
</table>
Simulations with Oracle and Linear Forecasts

A. Domínguez-García, K. Poolla, P. Varaiya

DER Coordinated Aggregation and Control

CERTS Program Review 33 / 37
Numerical Simulations

<table>
<thead>
<tr>
<th>Base Case Forecast Method</th>
<th>Total Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle</td>
<td>203.89</td>
</tr>
<tr>
<td>Persistence</td>
<td>526.74</td>
</tr>
<tr>
<td>Linear</td>
<td>469.38</td>
</tr>
<tr>
<td>Exponential</td>
<td>481.45</td>
</tr>
</tbody>
</table>

- Oracle solution is clearly best performing one [Not surprising]
- Linear and exponential both improve upon persistence forecast
Both linear and exponential forecasts require a parameter β that determines how fast forecast decays to mean value.

Local minima around 0.01s^{-1} are a good starting point for an aggregator looking to forecast $n(t)$.
Sensitivity Studies

- Imperfect forecast cost increases as imbalance penalty increases
- Generator-type DER gets used more when cheaper than storage-type
- Storage-type DER is used more when better prediction is available
- Other studies: storage size, generator size, etc
Recap

Risk-Limiting Dispatch for Reserve Provision

- Portfolio collectively behaves as reliably as dispatchable generation at lower cost

Virtual Battery Models for Load Flexibility

- These loads can follow dynamic regulation signals better than conventional generators

Aggregated Coordination of DERs for Ancillary Services Provision

- Aggregation of DERs enables participation in frequency regulation markets