Electrolytic Hydrogen Production Workshop


“Manufacturing and Scale Up Challenges: Cell Components, Membranes, & Catalysts”.

by

Krzysztof A. Lewinski, 3M
Goal: identify issues and opportunities for manufacturing and scale-up of electrolysis technologies: challenges, and suggestions for additional research, development and deployment activities which will help overcome those challenges.

Greatest Challenges and Opportunities:

- PEM electrolyzer market at an early stage;
- Market development gaining momentum driven by demand for renewable energy;
Present Manufacturing Status at 3M

- 3M has been developing Fuel Cell components since 1990’s,
- Sizeable investment had already been done in development of manufacturing capability for fuel cell components;
- Water electrolysis projects at 3M are leveraging that large investment in manufacturing of Fuel Cell components and adapting them to water electrolysis;
- 3M has it’s own unique catalyst technology (NSTF) that could be very applicable to use as an electrolyzer catalyst;
- 3M has it’s own PFSA based PEM with prospects of potential applicability to water electrolysis as well.
Manufacturing NSTF catalyst: Capabilities and Challenges

Capabilities:

• Roll-to-roll dry electrode coating;
• Vacuum sputtering to achieve low PGM loading;
• Supports and catalyst coated in one process;
• Alloy compositions, simple process to introduce new alloys;
• Process simplification over traditional dispersed coatings;
• Uniform PGM loading;

Challenges:

• Catalyst compositions not yet well proven in electrolysis mode
• Laboratory size catalyst runs made to date;
Manufacturing of electrolyzer specific PEM membrane: Capabilities and Challenges

Capabilities:

• Internal supply chain - monomer, ionomer, web casting;
• Large volumes of fuel cell membrane coated;
• Fully automated membrane coating line;
• Web-cleaning & air filtration, in-line inspection, etc.;

Challenge:

• More robustness needed for electrolyzer applications;
Manufacturing of electrolyzer specific PEM CCMs and MEAs: Capabilities and Challenges

Capabilities:

• Roll-to-roll CCM/MEA high speed assembly process, aligned anode & cathode electrodes, laminated under heat & pressure, clean & defect-free, Automated in-line camera inspection;

• Sub-gasketed membrane (CCM thrifting), proprietary adhesive coating tech.;

Challenges:

• Process development for electrolyzer CCMs;
• incompatibility of existing GDLs with roll-to-roll processing (stiff porous Ti sinters);
• carbon-based GDLs – limited by electrochemistry
• GDL cost ;
Suggestions for additional research and development (R&D) activities

- Research innovative catalyst compositions (near-mid term);
- Development of membrane specific for use in electrolyzers (near term);
- Alternative GDLs (near term);
- Development of manufacturing and assembly processes (long term);
- Catalyst/CCM/MEA/Cell/System durability and long term stability (near-mid term);
- Mechanisms of failure (near term);
- Scale-up (long term);