Membrane-Based Electrolysis: Overview

- Many cost and efficiency advancements still feasible for PEM electrolysis
 - >50% reduction in membrane thickness
 - >90% reduction in catalyst loading
 - Improved O₂ evolution activity
 - Part integration and high speed manufacturing
 - Balance of plant improvements: drying, electronics
- AEM electrolysis can enable new cost curve
 - Will need to balance with potential efficiency loss based on OH- conduction
 - Durability still needs significant work

Cost and Efficiency Comparison

- Advanced PEM can reach projected AEM introduction on cost
- AEM approaches current PEM efficiency at low current density but PEM has potential for additional improvement
- Need to balance technology with application (OpEx vs. CapEx)

AEM Challenges

- Materials are not at same scale or maturity yet
- Membrane and ionomer are far less stable than PEM especially to temperature
 - Need alternate electrode manufacturing methods
 - Air sensitivity requires special electrode conditioning
 - Proton OnSite has become standard test bed
- Non-PGM catalysts have had complications translating from liquid systems
 - Need optimization of 3-phase boundary layer at GDL
- Water management is more difficult
 - Combined with lower OH- conductivity likely limits operating current range

Membrane/Ionomer Durability Status

LANL/Sandia Durability Test, ~27C

ON SITE

Alternate Approach to Stability

• Carbonate electrolyte can stabilize ionomer but need to balance with balance of plant complexity

Non-PGM Catalyst and Cost Validation

	PEM baseline		Alkaline + improvements	% Original component
O_2 flowfield	100%	20%	13%	13%
H_2 flowfield	54%	24%	8%	15%
MEA	30%	5%	2.4%	8%

Cost estimates and validation

Needed Activities and DOE Assistance

- Need cohesive team efforts to make progress
 - Material interactions need to be understood
 - Multi-phase boundaries require strong analytical tools
- Use of consistent device testing under practical conditions for valid comparisons
- Integrators have the knowledge of the pieces and need to drive the effort
- Many parallels with the status of PEM electrolysis and integration of advanced materials

