
Proudly Operated by Battelle Since 1965

PNNL VOLTTRON[™] Application Development

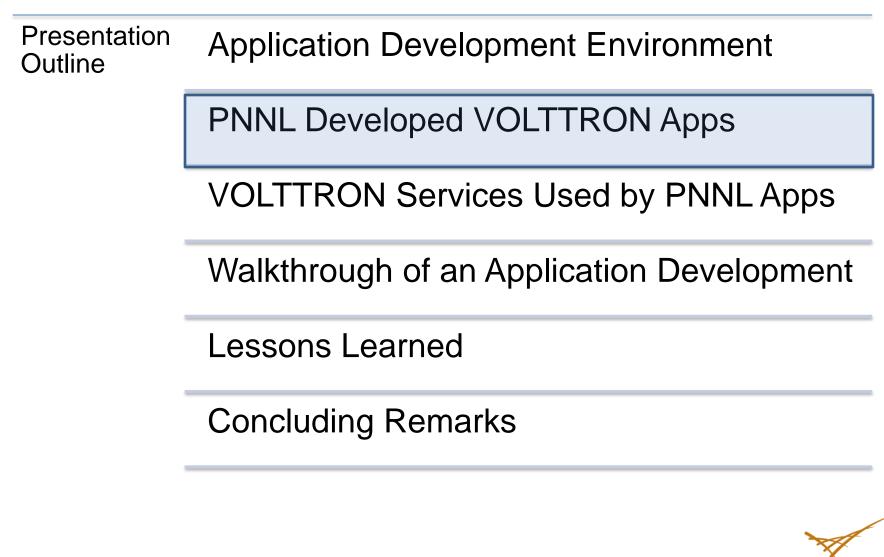
Srinivas Katipamula

DOE Building Technologies Office: Technical Meeting on Software Framework for Transactive Energy July 23-24, 2014

Pacific Northwest NATIONAL LABORATORY

Application Development Environment and Language Support

- VOLTTRON is a native Linux application
 - Can be run on PC and MAC using virtual machine (VM)
 - VirtualBox by Oracle is flexible free VM software
- VOLTTRON allows application and development flexibility
 - Applications can be developed in nearly any software language giving developers increased flexibility
 - Any application dependencies can be packaged with the application (i.e., external software libraries) to simplify deployment for end users
 - All PNNL applications were developed in Python 2.7



Recommended Development Environment

- Eclipse IDE (integrated development environment) is not required for agent development, but it can be a powerful developmental tool
 - Can be downloaded <u>http://www.eclipse.org/</u>
- Useful Eclipse plug-ins
 - EGit integrates Git source control with Eclipse -<u>http://download.eclipse.org/egit/updates</u>
 - Pydev support Python programming, code refactoring, debugging, code analysis and many other helpful feature -<u>http://pydev.org/updates</u>

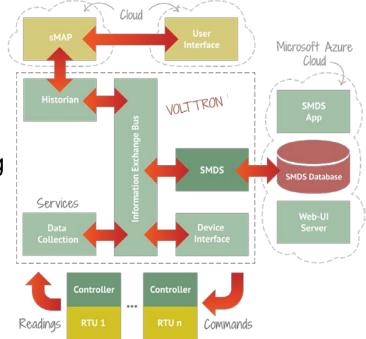
For more details on how to use and configure Eclipse with VOLTTRON to create applications refer to -<u>http://buildingsystems.pnnl.gov/documents/buildinggrid/PNNL-</u> <u>23182.pdf</u>

Pacific Northwest

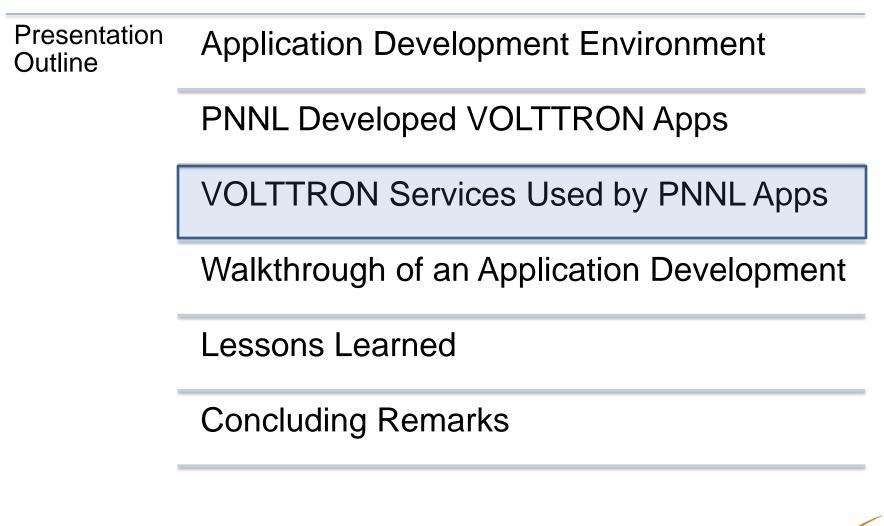
PNNL VOLLTTRON Applications

Demand Response Agent

 Make rooftop units (RTUs) grid responsive

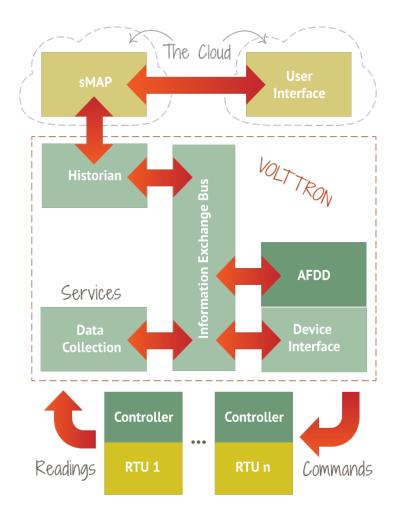

Automatically Detect and Diagnose Faults for RTUs

- Detect economizer and ventilation failures as they occur and notify building operator to correct them
- Smart monitoring and diagnostics system for conditioned-based maintenance service


Intelligent Duty Cycling

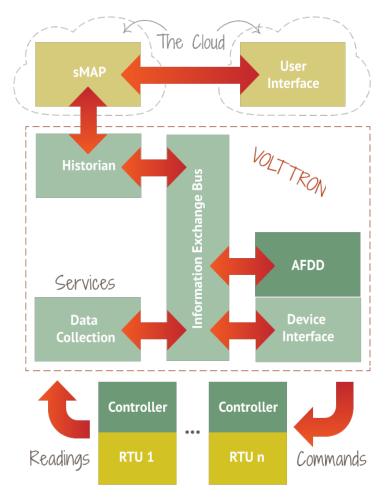
Embedded Advanced RTU Controls – Partner Solution

Improve operational efficiency of RTUs through use of advanced RTU controls leading to energy and carbon emission reductions over 50%



VOLTTRON Platform Services Used

- Device drivers BACnet and MODBUS drivers
- Message bus Information (data and messages) exchanged between applications and services thru the VOLTTRON message bus using Publish/Subscribe mechanism
- sMAP Data is stored in a simple measurement and actuation protocol (sMAP) data historian
 - sMAP is a fast open source time series database, but can't store non-numeric data



VOLTTRON Platform Services Used – Device Control

BACnet/MODBUS driver publishes data from devices to the platform and also stores the data in the sMAP historian

Actuator agent


- Device control: Actuator agent will accept commands from applications and issue the commands to the specified device
- Device access scheduling: Allows scheduling of agents' access to devices to prevent multiple agents from controlling the same device at the same time
 - Supports time-of-day, day-of-week and priority

Presentation Outline	Application Development Environment
	PNNL Developed VOLTTRON Apps
	VOLTTRON Services Used by PNNL Apps
	Walkthrough of an Application Development
	Lessons Learned
	Concluding Remarks

Pacific Northwest

Application Development - RTU Proactive AFDD Application

Automated Fault Detection and Diagnostic (AFDD) Capabilities:

- Comparing discharge-air temperature with mixed-air temperature (AFDD0)
- Checking damper modulation (AFDD1)
- Sensor faults (outdoor-, mixedand return-air temperature) (AFDD2)
- Not economizing when RTU should (AFDD3)
- Economizing when RTU should not (AFDD4)
- Excess outdoor air (AFDD5)
- Inadequate outdoor ventilation air (AFDD6)

Unique: Diagnostics algorithms will initiate proactive tests **on schedule** (e.g., commanding damper, etc.)

Identifying Needs of the AFDD Application

- First, identify the list of sensor values and command outputs necessary for application
 - Identify the protocol to use (MODBUS or BACnet)
 - Identify other data sources
 - Weather information from the VOLTTRON Weather Agent or other application within VOLTTRON
 - Other data sources
- Configure the data points

Database

Internet

Application Development: Communication and Control

- Communication and control of BACnet devices
 - VOLTTRON provides a network discovery tool as well as a device configuration tool
- BACnet discovery provides a list of BACnet devices on a network (Built on BACnet Who-Is and I-AM)
- BACnet configuration tool will generate a usable configuration file that will allow applications to communicate with the device
- Ensure that the control points on the device are writeable
 - Auto discovery may say some points are writeable, even though they are not
 - Performing simple test could be useful
 - May need BACnet vendor software to enable write access to the desired points

Pacific Northwest NATIONAL LABORATORY

Configuring the AFDD Application

Applications utilize a JSON style configuration file

```
##APPLICATION BUILD PARAMETER AND DEVICE (RTU) INFORMATION##
```

{

}¹⁴

```
"agent": {
   "exec": "afddagent-0.1-py2.7.eqg --config \"%c\" --sub \"%s\" --pub \"%p\""
},
"agentid": "PNNL AFDDAgent1",
"campus": "PNNL",
"building": "TWT",
"unit": "RTU1",
                                                        Types of configurable
 ##CONTROLLER POINT NAMES MAPPING FOR BACnet DRIVER
"volttron flag": "VoltronFlag",
                                                         parameters
"oat point name": "OutsideAirTemperature",
                                                              Application identifying
                                                           "mat point name": "MixedAirTemperature",
                                                              parameters such as agent id,
                                                              site, and device information
##THRESHOLDS AND DIAGNOSTIC PARAMETERS
"economizertype": 0,
                                                              Point name mapping for
"high limit": 70.0,
                                                              getting or setting device
"min oa temperature": 50,
                                                              points via the
"max oa temperature": 100,
                                                              BACnet/MODBUS driver
"seconds to steady state": 360,
"afdd0 mat dat consistency threshold": 5,
                                                              Diagnostic thresholds and
"afdd1 econ temp differential": 4,
                                                              parameters
"afdd2 rat mat consistency threshold": 4,
"afdd3 econ temp differential": 1,
"afdd4 minimum damper command": 20,
"afdd5 oat rat temperature difference threshold": 4,
 "afdd6 econ temp differential": 1
```

VOLTTRON Platform Service - Scheduling

- To schedule active control of a device an application must publish a schedule request on the message bus with the topic
 - Example topic format "RTU/actuators/schedule/request"

Components of schedule request

- Request type (NEW_SCHEDULE, CANCEL_SCHEDULE)
- Requestor ID (typically agent ID)
- Task ID (Unique task identifier)
- Task priority
- Device (Typically in the form "campus/building/device")
- Start time and end time of requested schedule block

VOLTTRON Platform Services – Scheduling (Cont.)

- Scheduling a block of time for applications is first come first serve, but employs the following priority schema
 - HIGH High priority applications cannot be pre-empted under any circumstance, but they can preempt other applications that use of LOW_PREEMPT priority
 - LOW Low priority applications cannot be preempted once they start device control
 - Considered started once the earliest time slot on any device has been reached
 - Cannot preempt other tasks
 - LOW_PREEMPT Low preempt priority applications can be preempted at any time
 - Applications are given a grace period to "clean up" interactions with the devices before being revoked (e.g. 120 seconds, configurable)
 - Cannot preempt other tasks
- For more details on formatting schedule request visit

https://github.com/VOLTTRON/volttron/wiki/ActuatorScheduleReq uest

How do we to Handle Multiple RTUs?

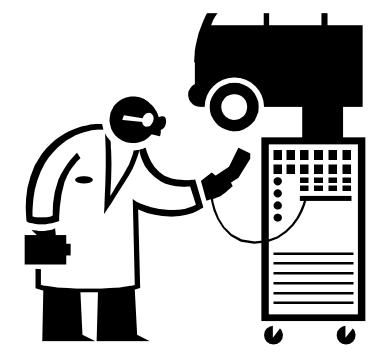
Each RTU has a

- Separate instance
- Each instance is configured to monitor, control, and produce diagnostic results for one RTU
- Some diagnostics are contingent on earlier diagnostics being fault free

Demonstration Site #1. Kent, WA

- If each instance was configured to run on multiple RTUs the application would have to manage these contingencies
- Applications are not limited to one device per instance, especially if an application's interactions with a device are passive

Demonstration Site #2, Berkeley, CA

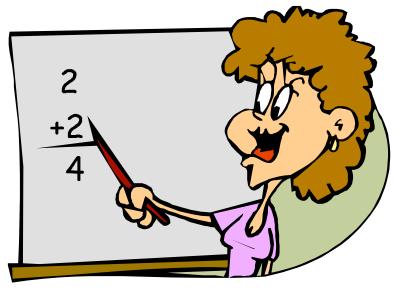


Cloud

Servers

Testing: Test Early and Test Often

- Test device and sensor communication early in the development
- Perform unit tests on manageable pieces of code. This will make debugging and correcting any problems easier
- Test after any software change, data I/O change, or device change



Presentation Outline	Application Development Environment
	PNNL Developed VOLTTRON Apps
	VOLTTRON Services Used by PNNL Apps
	Walkthrough of an Application Development
	Lessons Learned
	Concluding Remarks

Pacific Northwest NATIONAL LABORATORY

Lessons Learned

- During the proactive fault diagnostic an unexpected occurrence led to problems
 - PNNL applications and VOLTTRON service agent updates were performed
 - Application updates were performed first and the proactive diagnostic was restarted
 - Update coincided with the scheduled daily proactive diagnostics for the test site
- AFDD application started the scheduled proactive diagnostics immediately after the application was updated and restarted

Lessons Learned (cont.)

- AFDD application requested a device lock from the actuator agent
- AFDD application received the device lock and commanded the outdoor—air damper fully open (this occurred in mid-November)
- Next, the actuator agent was updated and restarted
- When the AFDD attempted to continue with the diagnostic, the actuator agent would not allow the AFDD application to modify the device controls
- When the actuator agent restarted, it had no recollection of any previous approved device interactions

Lessons Learned (cont.)

Consequences

- When occupants arrived in the morning, the room temperatures in the building were near 50°F
- Because the occupants had an override, RTUs were returned to normal operations
- Steps taken
 - Actuator agent was updated to store all previous device interactions and approved device lock requests
 - If the actuator agent was restarted for any reason, all scheduled device interactions would be saved
 - AFDD application was updated to handle the unexpected loss of a device lock

Presentation Outline	Application Development Environment
	PNNL Developed VOLTTRON Apps
	VOLTTRON Services Used by PNNL Apps
	Walkthrough of an Application Development
	Lessons Learned
	Concluding Remarks

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Summary

- 11 RTUs are being monitored and control for over1 year, with very little "supervision"
- Seamless interaction of data and information between applications and devices has been a "myth" for a long time
- What's good?
 - VOLTTRON has shown that it has the potential to overcome the data exchange myth
 - Application development was easy and flexible
- Limitation?
 - Lack of flexibility of choosing a historian of choice
 - Debugging can be a bit cumbersome
 - Lack of management tools
 - Lack of diagnostic tools
 - No PC or Mac versions

Questions?

Srinivas.Katipamula@pnnl.gov

VOLTTRON - <u>https://transactionalnetwork.org/</u> <u>http://github.com/volttron</u>

PNNL Developed Applications (Transactional Network)

Smart Monitoring and Diagnostic System http://buildingsystems.pnnl.gov/building/smds.stm

Proactive Diagnostics - <u>http://buildingsystems.pnnl.gov/building/afdd.stm</u>

Automated Demand Response - <u>http://buildingsystems.pnnl.gov/building/adr.stm</u>

