Building Technologies Program

Energy Efficiency & Renewable Energy

Transactional Network Overview

Meeting on the Software Framework for Transactive Energy July 23rd, 2014

George Hernandez Pacific Northwest National Laboratory

Technical Advisor Building Technologies Office US Department of Energy

Challenges

- Application Challenges
 - Integrating variable distributed generation
 - Solar
 - Wind
 - Integrating storage at multiple layers
 - Integrating electric vehicles (EV)
 - Managing end-use loads
 - Residential
 - Commercial
 - Industrial
 - Enabling energy coordination and trading between buildings and trading between buildings and grid
- Technology Challenges
 - Rapid deployment of networked (grid, buildings, etc.) sensors and controllers
 - Scalable control and diagnostics
 - Secure and reliable communication

Distributed Systems Call for Distributed Solutions

- Are there solutions that we can leverage that will improve efficiency (reduce energy and emissions) while supporting grid reliability and integration of distributed variable renewable generation?
- What happens in a neighborhood where everyone has solar panels on the roof and there is intermittent unexpected cloud cover?
 - If a cloud cover is anticipated, what changes can you make locally to mitigate that in advance?
- What happens in a neighborhood where everyone owns an EV and everyone comes home at the same time on a hot day and start to charge?
- What if appliances in your house could communicate with each other to coordinate energy usage and shift load to off-peak times?
 - Customer sees lower bills
 - Utilities get more predictable and even load
 - Quicker response to mitigate variable distributed power generation
- If we are going to invest in infrastructure to mitigate the above challenges, can we leverage the same distributed solution to support condition-based maintenance of equipment and improve operational efficiency of building systems?

Need

Accommodate Millions of Electric Vehicles

Manage End-Use Loads

Integrate Renewables

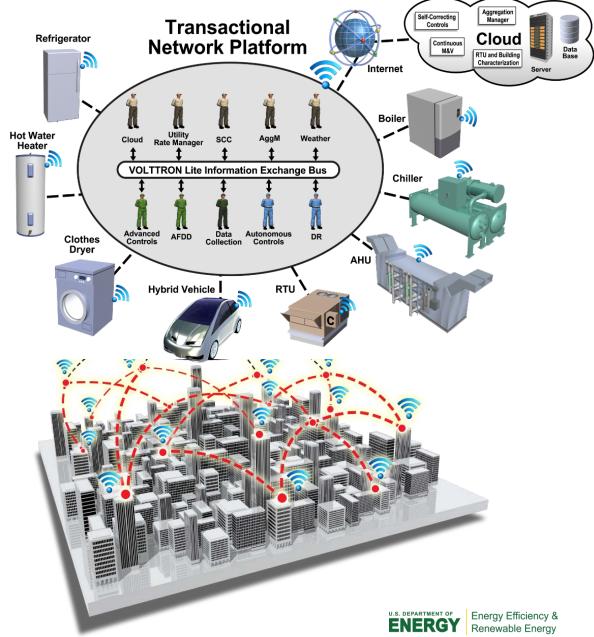
Maintain Reliability

- Large amount of data generated by sensors goes unutilized due to high volume. Offline analysis helps but is insufficient
- Appliances/devices unable to coordinate energy usage due to proprietary solutions and lack of underlying distributed control algorithms and platforms
- Growing ownership of electric vehicles will increase effect of load peaks
 - Increase in energy market purchases
 - Increase in maintenance due to equipment stress (e.g., transformers)
- Require techniques to better integrate renewables at all scales: rooftop photovoltaic (PV), wind farms, energy storage
- Agent-based approach is a natural fit for this area, but
 - Agent-based energy efficiency solutions often do not progress beyond simulation

Technology Solution Attributes

- Open, flexible and modular software platform
- Ease of application development
- Interoperable across vendors and applications
- Hides power and control system complexities from developers
- Object oriented, modern software development environment
- Language agnostic. Does not tie the applications to a specific language such as Java
- Broad device and control systems protocols support built-in
 - ModBUS, BACNet, DNP3, and others
- Multiple types of controllers and sensors
- Low CPU, memory and storage footprint requirements
- Supports non-Intel CPUs
- Secure
- Security libraries and cryptography built-in
- Manage applications to prevent resource exhaustion (CPU, memory, storage)
- Robust against denial-of-service (e.g., does not crash when scanned via network mapper)
- Supports modern application development environments

- Next generation building sensors/controls can be low cost and offer significant energy savings for buildings and other technology sectors
 - BTO-AMO Alcoa project
- The BTO prioritization tool indicates that various building controls measures have the potential to offer significant energy savings (> ~500 TBTUs in 2030) and are cost effective. These savings are derived from...
 - Commercial building automation particularly in small and medium buildings
 - Advanced controllers in new refrigeration systems
 - Demand control ventilation in commercial buildings
 - Predictive thermostats in homes and commercial buildings
 - Residential building automation (a sector of high market activity)
- Development and deployment of various cost effective transaction based control measures will contribute to 30% energy savings by 2030.

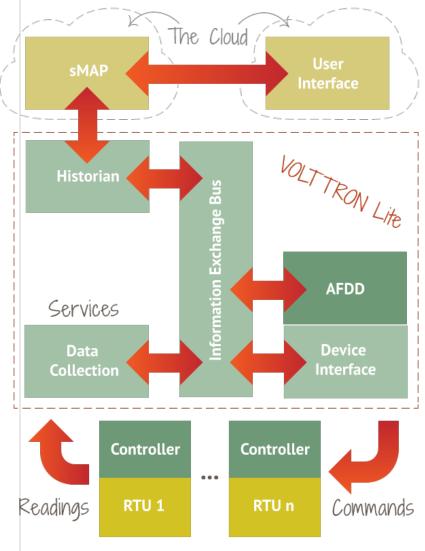


Transactional Network Controls

- Buildings need to be smarter to participate in transactions within the building, with other buildings, and with grid entities.
- Sensors and controls at the whole building level and at the component level are fundamental to optimize DER and the grid.
- The transactional network enables energy saving retrofit solutions

AND

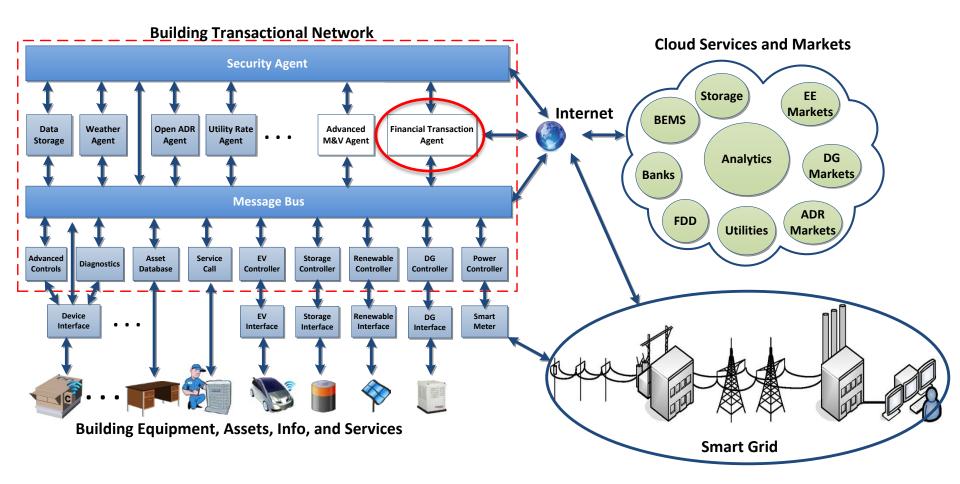
the networked systems to transact with all grid connected devices (e.g. EV, storage) and with the grid to help mitigate DER related disturbances.



- Transactional network enables:
 - Interactions among networked systems (e.g., RTUs and other building systems) and the electric power grid
 - Software applications on the platform or in the Cloud
- Embedded automated diagnostics and advanced controls on the transactional platform and the RTU controller
- Applications running in the Cloud in cases where the transactional platform and controller resources (i.e., processing) are inadequate
- Applications that provide continuous monitoring and verification, automated energy management, etc.

Transactional Network

- The transactional network enables energy saving retrofit solutions AND the networked systems to transact with the grid to mitigate variable distributed renewable energy sources
- Proof of concept has been demonstrated using networked RTUs, Supermarket refrigeration systems and Photovoltaic arrays
- In the future, the concept can be extended to network other building systems, interaction between buildings, electric vehicles, storage, microgrids, CHP, etc.


VOLTTRON[™] Platform

- VOLTTRON is a software platform for next generation distributed control applications for integrating buildings and power grid
- Proven through simulation, prototypes and field deployments
- Flexible, modular and language-agnostic
- Open-source, easy to extend, already being used by external collaborators
- Maintain security and manage platform resources
- Services for applications to find each other

Transactional Network from VOLTRON Perspective

A key component of the Transactional Network is a 'Financial Transaction Module'. This will provide the automated mechanism to 'track and settle' transactions executed by the 'buyers and sellers' of energy and energy related services

