2014 DOE Vehicle Technologies
Program Review Presentation

Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development

Matthew Barth
Kanok Boriboonsomsin
University of California Riverside
June 19, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

• **Timeline**
 – Start 10/1/2011
 – End 9/30/2014
 – 80% complete

• **Budget**
 – Total project funding
 • DOE – $1,210,235
 • Contractor – $665,472
 – DOE funding in FY13
 • Received $376,301
 • Expended $333,166
 – DOE funding for FY14
 • Received $320,803
 • Expended $133,846*

• **Barriers**
 – Public acceptance
 – Safety concern
 – Cost Effectiveness

• **Partners**
 – ESRI
 – NAVTEQ
 – Beat the Traffic
 – Earthrise Technology
 – Automatiks
 – U. of California Berkeley
 – Riverside Transit Agency (RTA)
 – California Department of Transportation (Caltrans)

*Through Feb 2014
Relevance

• Overall project goal
 – To design, develop, and demonstrate a next-generation driving feedback system that will:
 • Improve fuel efficiency of the fleet of passenger cars and commercial vehicles by at least 2%,
 • Comply with federal safety and emissions regulations, and
 • Deployable across existing vehicle fleets.

• Project objectives over the past year (March 2013 – March 2014)
 – Complete the last module of the system
 • Eco-Score and Eco-Rank
 – Complete system integration
 – Perform system demonstration
 – Begin the field operation test
Approach (1)

- Offer and encourage fuel-efficient choices to drivers/fleet operators in multiple aspects of their vehicular travel:
 - **Eco-Trip Scheduling module** allows fleets to plan a sequence of stops (e.g., for delivery) that is most fuel efficient.
 - **Eco-Routing Navigation module** suggests the most fuel-efficient route from one stop to the next.
 - **Eco-Driving Feedback module** provides sensible information, recommendation, and warning for fuel-efficient vehicle operation.
 - **Eco-Score and Eco-Rank module** provides platform for driving performance tracking, self-evaluation, and peer comparison.

- Fuel savings from individual modules can add up.
- The modules make use of real-time information, high-performance computation, and advanced analytics.
Approach (3)

• Years 1 & 2 for research and development.
• Year 3 for field operational test (FOT) and evaluation of system benefits.
• FOT on 45 vehicles from three fleets with different characteristics.
 – 15 paratransit shuttles of Riverside Transit Agency
 • 2012 Ford E-450
 • Operated 8-12 hours a day on weekdays
 – 15 pickup trucks of California Department of Transportation
 • 2008 Chevy Silverado C15
 • Assigned to individual employees for business use
 – 15 private vehicles of general public
 • Varied make, model, year
 • Varied usage patterns and driver demographics
Approach (4)

- Milestones for FY13 and FY14

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Milestones</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 2012</td>
<td>Complete Eco-Driving Feedback Module</td>
<td>Completed</td>
</tr>
<tr>
<td>Feb 2013</td>
<td>Complete Eco-Routing Navigation Module</td>
<td>Completed</td>
</tr>
<tr>
<td>Mar 2013</td>
<td>Complete Eco-Score and Eco-Rank Module</td>
<td>Completed</td>
</tr>
<tr>
<td>May 2013</td>
<td>Complete system integration design</td>
<td>Completed</td>
</tr>
<tr>
<td>Jul 2013</td>
<td>Complete system integration with testbed vehicle</td>
<td>Completed</td>
</tr>
<tr>
<td>Sep 2013</td>
<td>Demonstrate the system</td>
<td>Completed</td>
</tr>
<tr>
<td>Dec 2013</td>
<td>Complete system installation in vehicles participating in field operational test</td>
<td>Completed</td>
</tr>
</tbody>
</table>
Technical Accomplishments (1)

• Eco-Driver Feedback
 – Eco-speed band
 – Warnings
 • Aggressive acceleration
 • Hard braking
 • Excessive idling
 – Fuel efficiency
 – Cumulative fuel savings

• Feedback based on:
 – Actual fuel use
 – Driver’s actions
 – Real-time traffic
 – Road slope
Technical Accomplishments (2)

• Eco-Score logics
 – Not penalize drivers for stuck in traffic congestion
 – Not penalize drivers for non-discretionary idling (e.g., at red lights)
 – Encourage milder acceleration and braking
Technical Accomplishments (3)

• Eco-Score algorithms
 – Speed score (s_s)
 – Idling score (s_i)
 – Acceleration score (s_a)
 – Deceleration score (s_d)
 – Overall score (s_o)

• Score aggregation
 – Individual scores calculated second-by-second
 – Second-by-second scores averaged for any time periods (trip, day, week, lifetime, etc.)
Technical Accomplishments (4)

• Eco-Score & Eco-Rank web application
• Ranking based on the overall Eco-Score
• Ranking period
 – Monthly
 – Annually
 – Etc.
• Comparing drivers
 – Same fleets
 – Same units in a fleet
 – Same vehicles
 – Private leagues
 – Etc.
Technical Accomplishments (5)

- System integration
- System demonstration

![Graph showing efficiency comparison between time and fuel consumption](image)
Technical Accomplishments (6)

- Baseline data – 3 weeks data for Caltrans vehicles

<table>
<thead>
<tr>
<th>Vehicle ID</th>
<th>No. of Trips</th>
<th>Distance (miles)</th>
<th>Duration (minutes)</th>
<th>Fuel Use (gallons)</th>
<th>Average Speed (mph)</th>
<th>MPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>7004942105</td>
<td>28</td>
<td>701</td>
<td>895</td>
<td>30</td>
<td>47</td>
<td>23</td>
</tr>
<tr>
<td>7004955106</td>
<td>111</td>
<td>606</td>
<td>1889</td>
<td>40</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>7004959110</td>
<td>31</td>
<td>683</td>
<td>1627</td>
<td>51</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>7004957107</td>
<td>69</td>
<td>1492</td>
<td>2376</td>
<td>73</td>
<td>37</td>
<td>20</td>
</tr>
<tr>
<td>7004951104</td>
<td>4</td>
<td>30</td>
<td>43</td>
<td>2</td>
<td>43</td>
<td>15</td>
</tr>
<tr>
<td>7004956108</td>
<td>65</td>
<td>1034</td>
<td>1377</td>
<td>39</td>
<td>45</td>
<td>27</td>
</tr>
<tr>
<td>7004948102</td>
<td>56</td>
<td>120</td>
<td>467</td>
<td>8</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>7004949101</td>
<td>91</td>
<td>659</td>
<td>2291</td>
<td>45</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>7004945103</td>
<td>19</td>
<td>700</td>
<td>772</td>
<td>31</td>
<td>54</td>
<td>23</td>
</tr>
<tr>
<td>7004922109</td>
<td>41</td>
<td>803</td>
<td>1181</td>
<td>31</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>7004962111</td>
<td>16</td>
<td>118</td>
<td>220</td>
<td>5</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>7004958113</td>
<td>18</td>
<td>73</td>
<td>130</td>
<td>3</td>
<td>34</td>
<td>24</td>
</tr>
</tbody>
</table>
Technical Accomplishments (7)

- Baseline data – 3 weeks data for Caltrans vehicles
 - Same vehicle make, model, year
 - Different drivers
 - Different trip patterns
 - Different driving behaviors
Responses to Previous Year Reviewers’ Key Comments (1)

• “It was not clear how many drivers would be involved, how they would be selected, and what controls would be established.”
 – At the time, the fleet and driver selection was in flux. Slide #6 of this presentation now describes the number of drivers from each of the three fleets.

• “…also unclear if individual drivers in a fleet were being tracked.”
 – Individual drivers are tracked for both fleet and consumer vehicles.

• “…the project did not seem to control variables such as miles driven, route, duty cycle, terrain, routing, climate, traffic conditions, and weight of load carried, …the last variable has a tremendous effect on fuel consumption …”
 – It is correct that fuel efficiency can be affected by all these variables. The system includes Eco-Score as a measure of fuel-efficient “driving behaviors”. Eco-Score is independent of the variables mentioned above.
 – For the paratransit fleet, the project team has access to trip scheduling database, i.e., knowing the number of passengers in the vehicles at any point in time.
Collaborations & Coordination (1)

- Collaborations within the project
 - U. of California Riverside (university; prime contractor)
 - Conduct system R&D, lead system testing & evaluation
 - Esri (industry)
 - Provide trip scheduling & GIS software and technical support
 - NAVTEQ (industry)
 - Provide 3D digital map and real-time & historical traffic data
 - Beat the Traffic (small-business enterprise)
 - Model intersection delays using smartphone-based GPS data
 - Earthrise Technology (small-business enterprise)
 - Develop OBD-II interface software and provide technical support
 - Automatiks (small-business enterprise)
 - Configure connectivity between in-vehicle device and system server
Collaborations & Coordination (2)

• Collaborations within the project (continued)
 – Riverside Transit Agency (local government)
 • Provide fleet and staff support for system field operational test
 – California Department of Transportation (state government)
 • Provide fleet and staff support for system field operational test
 – University of California Berkeley (university)
 • Conduct expert interviews and drivers’ perception surveys

• Coordination with other research programs
 – Eco-Driving research of the U. of California’s Multi-campus Research Program and Initiative (MRPI)
 – Applications for the Environment: Real-Time Information Synthesis (AERIS) research of the Federal Highway Administration
Collaborations & Coordination (3)

• Collaborations outside the project
 – Worked with Nissan to develop method for quantifying fuel saving/GHG reduction benefits of eco-driving technologies
 – Interviewed 11 experts to obtain inputs for system design
 • California Department of Transportation [fleet management]
 • Daimler Trucks [R&D]
 • Environmental Protection Agency (2 experts) [policy]
 • Environmental systems Research Institute [R&D]
 • General Motors [R&D]
 • National Renewable Energy Laboratory [R&D]
 • Riverside Transit Agency [fleet management]
 • Westat [consulting]
 • University of Minnesota, HumanFIRST Program [R&D]
 • U.S. Department of Transportation [policy]
Proposed Future Work

• Field operational test
 – Complete the 2-month collection “baseline” driving data without feedback system
 – Install the driving feedback system
 – Collect driving data with feedback system for 2 months
 – Conduct driver opinion surveys

• System evaluation
 – Establish evaluation metrics
 – Analyze collected data without and with feedback system
 • Determine system performance, fuel savings, and cost effectiveness
 – Analyze driver opinion surveys
 • Determine driver acceptance
 – Identify strengths and areas for future improvement
Summary

• Relevance
 – Technology targeted at improving fuel efficiency of the existing fleet by at least 2% (and potentially much higher)

• Approach
 – Cost-effective system that encourages fuel-efficient choices in trip scheduling, route selection, and vehicle operation

• Technical Accomplishments
 – Completed research & development
 – Completed system integration and demonstration

• Collaborations
 – Wide range of collaborators both inside and outside the project

• Future Work
 – To complete field operational test and system evaluation