Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles

U.S. Department of Energy
Annual Merit Review

P.I.: John P. Rugh
Presenter: Daniel Leighton
National Renewable Energy Laboratory

June 17, 2014

Project ID: VSS046

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline
- Project Start Date: FY11
- Project End Date: FY14
- Percent Complete: 80%

Budget
- Total Project Funding (to date): $1,575 K *
- Funding for FY13: $575 K *
- Funding for FY14: $250 K
- Partner In-Kind Cost Share: $375 K **

Barriers
- **Complexity**: integrated multi-valve system for multiple thermal loads
- **Low temperature operation**: cabin heating at very low temperatures
- **Front-end heat exchanger frosting**: heat pumping below 0°C ambient

Partners
- **Interactions/collaborations:**
 - Delphi
 - Halla Visteon Climate Control
- **Project Lead**: NREL

* Shared funding between VTO programs: VSST, APEEM, ESS
** Not included in total
Relevance: Project Objectives

• Combine electric drive vehicle (EDV) fluid loops to reduce weight, cost, and energy consumption
• Integrated thermal solution to increase EDV range at national level

• Recent focus: bench testing

ESS = energy storage system
PEEM = power electronics and electric motors
Relevance: Support Broad VTO Efforts

• DOE VTO Multi-Year Program Plan
 o “... development of advanced vehicles and components to maximize vehicle efficiency ...”

• EV Everywhere Grand Challenge
 o A goal of EV Everywhere is to have automobile manufacturers produce a car with sufficient range that meets consumers’ daily transportation needs

• Combined Fluid Loop (CFL) Project
 o Develop CFL system to maximize vehicle efficiency and range by reducing auxiliary loads and improving battery thermal management

VTO = Vehicle Technologies Office
Relevance: VTO Integration

- **Vehicle Systems**
 - Lee Slezak
 - David Anderson

- **Energy Storage**
 - Tien Duong
 - Brian Cunningham
 - Peter Faguy

- **Power Electronics & Electric Motors**
 - Susan Rogers
 - Steven Boyd

- Vehicle electric powertrain model
- Battery thermal and efficiency models
- Power electronics and electric motor thermal models
Approach/Strategy: Overview

- Evaluate with 1-D thermal model
- Bench test verification of performance and address technical barriers
- Collaborate with industry on vehicle-level demonstration

Timeline:

- **Modeling** (FY11 & FY12)
- **Bench Testing** (FY13 & FY14)
- **Vehicle Testing** (Future)
Approach/Strategy: Challenges

- Investigate performance over wide range of conditions
- Enable heat pump operation and waste heat recovery
- Identify efficiency versus complexity trade-offs to develop solutions for cost reduction and EDV range improvement

Impact of Temperature on Range

*ANL climate chamber dynamometer testing of stock 2012 Nissan Leaf

ANL = Argonne National Laboratory
AVTA = Advanced Vehicle Testing Activity
Milestones

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Q3** June 2014 | **Milestone:**
 • Complete modifications of bench test apparatus for cold weather operation and test the CFL concept in a cold environmental chamber |
| **Q4** Sept. 2014 | **Milestone:**
 • Submit a summary of the project results in the DOE annual report format |
Technical Accomplishments and Progress: Overview

• March 2013 to March 2014 – Bench testing
 o Constructed bench test apparatus
 o Integrated vehicle, power electronics, electric motor, battery, and cabin models into LabVIEW data acquisition and control system
 o Constructed CFL system using prototype heat exchangers from Delphi and an electric compressor from HVCC
 o Completed hot weather steady-state testing
 o Near completion of hot weather drive-cycle testing
• Designed for hardware-in-the-loop drive cycle testing with vehicle load simulation

HX = heat exchanger
PTC = positive temperature coefficient
WEG = water/ethylene glycol
Technical Accomplishments and Progress: CFL System

- Allows multiple configuration strategies, including waste heat recovery and heat pumping
• Most important technical accomplishment was successful design, construction, and operation of CFL test bench
Technical Accomplishments and Progress: Steady-State Cooling

- Stable system operation, reasonable energy balances and errors, and performance meeting expectations

COP = coefficient of performance
• Cabin pull-down penalty due to experiment thermal mass – real system more compact

UDDS = Urban Dynamometer Driving Schedule
Technical Accomplishments and Progress: Drive Cycle Cooling

*Preliminary Results

PEEM & ESS Temperatures for HWFET at $T_{amb} = 38^\circ C$

- PEEM temperatures within thermal limits, ESS control strategy needs further investigation

HWFET = Highway Fuel Economy Driving Schedule
Technical Accomplishments and Progress: Drive Cycle Cooling

*Preliminary Results

Combined Cycle (45% UDDS/55% HWFET) - Range

- A/C Penalty: -11%
- PEEM/ESS Penalty: -0.3%
- Soak Penalty: -2.6%

Range [Mi]

Ambient Temperature [°C]
Technical Accomplishments and Progress: Drive Cycle Cooling

*Preliminary Results

Combined Cycle (45% UDDS/55% HWFET) - Range

- A/C Penalty
- PEEM/ESS Penalty
- Soak Penalty

Range [Mi]

Ambient Temperature [°C]

-11% - 26% - 16% - 0.3% - 2.6% - 0.5% - 5.5% - 0.4% - 4.2%
Technical Accomplishments and Progress: Drive Cycle Cooling

*Preliminary Results

Combined Cycle (45% UDDS/55% HWFET) - Range

- PEEM cooling <1% penalty to range, ESS cooling penalty significant at higher ambient temperatures
Responses to FY13 AMR Reviewers’ Comments

<table>
<thead>
<tr>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| Consider defog and defrost | • Without vehicle cabin, direct testing is not possible, but heating capacity matches conventional vehicle
• If vehicle test is pursued, direct evaluation is possible |
| Collaborate with vehicle OEM | • Bench testing in close collaboration with Delphi
• Interest from Delphi and a vehicle OEM to develop technology for vehicle demonstration |
| Characterize baseline for “extreme” environments | • Bench testing at ambient temperatures from -30°C to 43°C |

OEM = original equipment manufacturer
Collaboration: Delphi

• Delphi provided prototype refrigerant-to-coolant, and coolant-to-air heat exchangers

[Diagram with labels: Flow Meter, Suction, Sub-cooler, TEV, Receiver/Dryer, Condenser, Chiller, Discharge.]

TEV = thermostatic expansion valve
Collaboration: Halla Visteon Climate Control

- Halla Visteon Climate Control provided high-voltage DC electric compressor capable of heat pump operation
Collaboration: Summary

• **Industry**
 - Delphi
 - Halla Visteon Climate Control

• **VTO Tasks**
 - Advanced Power Electronics and Electric Motors
 - PEEM thermal models
 - Vehicle Systems
 - FASTSim vehicle powertrain model
 - Energy Storage Systems
 - Battery thermal and efficiency (voltage vs. temperature) models
Remaining Challenges and Barriers

• **Complexity**
 - Must define trade-offs between complexity and efficiency for industry buy-in

• **Low temperature operation**
 - Cold weather testing must demonstrate sufficient heat pump performance when supplemented with waste heat

• **Front-end heat exchanger frosting**
 - Testing must measure impact of hot coolant defrost cycling
Proposed Future Work

• **Remainder of FY14**
 - Complete hot weather drive cycle testing
 - Conduct cold weather drive cycle testing
 - Identify best practices for system design and control
 - Analyze technology impact on EDV range and thermal management

• **FY15 and beyond**
 - Work with industry partners (suppliers and an OEM) to demonstrate technology at vehicle level
Summary

• Designed and built test apparatus to validate potential of CFL to reduce cost, weight, and volume of thermal system while increasing vehicle range

• Hot weather testing almost complete, cold weather testing to begin soon

• Looking to work with industry partners on a vehicle-level demonstration to develop the technology and reduce national energy consumption
Acknowledgments and Contacts

Special thanks to:
- Vehicle Technologies Office
- U.S. Department of Energy
- Lee Slezak
- David Anderson

Industry collaborations:
- Delphi
- Halla Visteon Climate Control

NREL Team:
- Kevin Bennion
- Cory Kreutzer
- Daniel Leighton
- John P. Rugh
- Jeff Tomerlin

For more information:
- Daniel Leighton
 National Renewable Energy Laboratory
daniel.leighton@nrel.gov
 303-275-4489

- John P. Rugh
 National Renewable Energy Laboratory
john.rugh@nrel.gov
 303-275-4413
Photograph Credits

1) Daniel Leighton, NREL
2) John P. Rugh, NREL
3) Daniel Leighton, NREL
4) Mike Simpson, NREL
5) Daniel Leighton, NREL
6) Daniel Leighton, NREL
7) Daniel Leighton, NREL
8) Daniel Leighton, NREL
9) Daniel Leighton, NREL
10) Daniel Leighton, NREL
Technical Back-Up Slides
Cooling Mode (Active ESS Cooling)
Cooling Mode (Passive ESS Cooling)
“Free” Cooling Mode

- Liquid
- PEEM
- Vehicle Cabin
- Refrigerant
- WEG
- Air
- ESS
- WEG-to-air HX
- Var.
Mild Heating Mode (Only Heat Recovery)

- Liquid
- PEEM
- Vehicle Cabin
- Cabin Heater
- ESS
- Front-end WEG-to-air HX

Legend:
- Refrigerant
- WEG
- Air
Heating Mode

- Condenser
- Evaporator
- PEEM
- PTC Heater
- Cabin Heater
- Cabin Cooler
- Vehicle Cabin
- Front-end WEG-to-air HX
- ESS

Flow of Refrigerant:
- Condenser to PEEM
- PEEM to PTC Heater
- PTC Heater to Cabin Heater
- Cabin Heater to Cabin Cooler
- Cabin Cooler to Vehicle Cabin
- Vehicle Cabin to Front-end

Flow of WEG:
- Condenser to Evaporator
- Evaporator to PTC Heater
- PTC Heater to ESS

Flow of Air:
- WEG-to-air HX to ESS
- ESS to Front-end