

Building the Distribution Grid of the Future

Ronald L. Litzinger
President, Southern California Edison

Quadrennial Energy Review

Electricity Transmission, Storage and Distribution – West July 11, 2014

Southern California Edison

- One of the largest utilities in the U.S. providing electric service to nearly 14 million people in 50,000 square miles of service area
- 22.5 GW peak demand and 7.4B KWh delivered in 2013
- Industry leader in renewable energy procurement, electric transportation, demand response, energy efficiency and Smart Grid
- Significant system investments 2014 2017 driven by:
 - ☐ System reliability and infrastructure replacement
 - ☐ California Renewables Portfolio Standard
 - ☐ Technology improvements

Key California Energy Goals

Greenhouse Gas Emissions

- State law enacted in 2006 requires GHG emissions to be reduced to 1990 levels by 2020
- Cap-and-Trade program established in 2011

Renewable Generation

 Renewables Portfolio Standard Requirement of 33% by 2020 (SCE reached 21.6% in 2013)

Prioritizing "Preferred Resources"

 Energy Efficiency and Demand Response at top of State "Loading Order"

Distributed Generation & Energy Storage

- California Solar Initiative 1,940 MW residential solar installations by 2017
- Energy Storage 1,300 megawatts by 2020
- Distribution Resources Plan Investor owned utilities to submit plan that identifies optimal locations, additional investment, and barriers to deployment of distributed energy resources

Future Distribution Grid Must Be Reliable And Smart

Safe

- Improved situational awareness
- Advanced protection schemes
- Cyber mitigation

Reliable

- Circuits isolate faults automatically (self heal)
- Integrated real time Grid Assessment Tool for Operators
- Technology to safely ride through system disturbances

Resilient

- Interaction with customer equipment to manage twoway power flows
- Advanced voltage control (more dynamic)

Flexible

- Technology platform supports increasing use of distributed resources as grid assets
- Enable further advancement to adapt to changing business and system models

The Utility's Role: Building the Grid of the Future

Grid Readiness

- Modernization of planning, design, and operations by increasing flexibility and interoperability
- Planning changes are required to enable the utility to orchestrate distributed energy resources as grid assets
- Future grid will include monitoring and voltage regulation enhancements, followed by increasing investments in monitoring, control, and communication systems

The Future Grid

- Provide the backbone distribution system
- Create a "plug and play" system capable of two-way electricity flows
- Facilitate integration of distributed energy resources
- Ensure grid **reliability** and power quality
- Support continued growth and investment

Utilities will play the key role in designing, building, and operating the distribution grid of the future