Alloy Development for High-Performance Cast Crankshafts

PI: John Hryn
Presenter: Dileep Singh
Argonne National Laboratory
June 19, 2014

Argonne Research Team:
C. Chuang, D. Singh, J. Hryn, P. Kenesei, and J. Almer

Vehicle Technologies – Annual Merit Review

Project ID: PM058

Sponsored by US Department of Energy
This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start March 2014
- Project end March 2017
- 5% complete

Budget
- FY14-17 = $300 K (DOE)

Barriers
- **Performance**: Meet or exceed the performance of current forged crankshafts. (as-cast UTS > 800MPa, YS > 615MPa)
- **Life**: Material and process must achieve local ultra-high cycle fatigue requirements of current baseline
- **Cost**: no more than 110% of production cast units

Project Partners
- Caterpillar, Inc. – Lead
- Argonne National Laboratory
- General Motors
- Northwestern University
- University of Iowa
Project Team (Partners)

- **GM**
 - Material and Process Development
 - Material Characterization
 - ICME
 - Design Optimization
 - Concept Design Cost Model

- **Caterpillar**
 - Material and Process Development
 - Material Characterization
 - ICME
 - Design Optimization
 - Concept Design Cost Model

- **The University of Iowa**
 - Casting Process Development
 - Experimental Casting Samples
 - Castability Evaluation (Fluidity, Hot Tear, Porosity)

- **Northwestern University**
 - Computational Material Design
 - Solidification Design
 - Transformation Design
 - Nano Design
 - Material Characterization

- **Argonne National Laboratory**
 - Material Evaluation using Advanced Photon Source (APS) X-Ray and MTS Testing Machine
 - In-Situ Microstructure and Damage Measurements

[Image of a casting process and equipment]
Relevance

- Use of high strength steels can contribute to about 10% weight reduction as compared to mild steel. This can translate to about 6-7% improvement in fuel economy for a midsize sedan.

- Combining the casting process and the stiffness advantage of steel will allow the weight reduction potential to be maximized without sacrificing performance.

- Current forged crankshafts require machining post forging that adds to the cost. Cast steel crankshafts would not require additional machining costs.

- Implementing the technology developed in this project will provide US with energy security, while lowering costs and reducing impacts on the environment.
Objectives

- Overall project goal is to develop cast steel alloy(s) and processing techniques that are tailored for high performance crankshafts to achieve target as-cast properties of 800 MPa ultimate tensile strength and 615 MPa yield strength. This alloy will be a replacement for expensive forgings, without exceeding the cost target of 110% of the current production cast units.

- Effort at ANL will focus on several activities to support the project goals:
 - Utilize high-energy x-ray imaging and diffraction techniques to correlate microstructure/phases/defects in the alloy(s) with processing parameters. The results will be used to optimize design and processing of alloy compositions to achieve target properties.
 - Conduct in situ fatigue test to establish the durability requirements for high-performance gasoline and diesel engine applications which currently use forged crankshafts.
Milestones

- **FY2014 (On-going)**
 - Tomographic study of casting quality and structure
 - Design and develop high temperature apparatus for in-situ phase evolution study
 - Evaluation of laboratory sample castings (microstructure, property, and quality)

- **FY2015**
 - Optimize and characterize the high potential alloy & process concepts
 - Tomographic study of selected candidate cast alloys
 - In-situ phase evolution studies, including formation of precipitates and voids as a function of cool down temperature

- **FY2016/17**
 - In-situ tensile and fatigue behavior study on down-selected compositions/heat treatment at room and elevated temperatures
 - Investigate formation of micro-cracks during tensile loading and growth of cracks during cyclic fatigue

Correlate microstructure to processing and mechanical properties to optimize cast alloy for crankshafts
Approach

Advanced Photon Source – “Industrial” techniques

- **Core**
 - Macromolecular crystallography (many)
 - Powder diffraction (1-BM, 11-BM)
 - XAFS (S20)
 - Tomography (2-BM)
 - SAXS (various)
 - Strain scanning (1-ID)

- **Specialized/in development**
 - Nano-diffraction (24-ID, 34-ID)
 - Fluorescence microscopy (2-ID)
 - High-energy diffraction microscopy (1-ID)
 - Time resolved imaging (32-ID)
 - Combined techniques
 - EXAFS/SAXS/PDF
 - SAXS/WAXS (1-ID)
 - WAXS/Imaging (1-ID)
Approach

Imaging techniques for internal structure

- Absorption or phase tomography
 - Full field 2D image (mm2) of direct beam
 - Absorption contrast (near) to phase contrast (far) by changing sample-detector
 - Take image and rotate M times (M images)
 - Reconstruct -> 3D volume with resolution ~ 1 µm
Example of Typical Result

Tomography study of high strength cast iron

- Internal structure of graphite phases, their network connectivity, voids and casting defects can be reconstructed in 3D
Approach

High Energy Diffraction Microscopy (HEDM)
- Non-destructive microstructural mapping

@1-ID, APS

NF-HEDM
- 3D grain map

FF-HEDM
- Grain-level strains vs load

Tomography
- Inclusion content
Example of Typical Result

In-situ HEDM study of grain rotation during annealing

- 4 deg color scale
- 2 deg boundaries
- orientation changes located at boundaries

* Information is being used to drive and test computational materials science predictions
In-situ HEDM study of copper during mechanical loading

Determine the microstructure non-destructively

“3D EBSD”

APS, Sector - 1

Near Elastic Limit

After 1% Creep Strain
Approach

X-ray micro-beam for phase and chemistry characterization

Beam size: 0.3 µm x 0.4 µm

Diffraction approach ➔ structure information
Fluorescence approach ➔ chemical information

@34-ID, APS
Approach

X-ray micro-beam fluorescence analysis

- **Sample surface**
 - Iron
 - Graphite
 - Fluorescence detector

- **Probed area**
 - Graphite
 - Ferrite
 - Pearlite

- **Fluorescence analysis**
 - provide chemical information

- **Attenuation length**
 - Graphite (~ 5 mm)
 - Iron (15 ~ 20 μm)

- **16.5 keV focused X-ray**
 - sub-micron beam size, 0.3 x 0.4 μm
Approach

High Energy Diffraction for phase evolution study

- **In situ** characterization of alloy solidification process
- Simultaneous WAXS/SAXS and full-field imaging
 - WAXS: lattice strain, texture, phases evolution
 - SAXS: nanoscale voids, bubbles, particles, crystal nucleation and growth
 - Imaging: microsize cracks, porosity
- 2D detector array for long sample-detector distance provide High-resolution data

@1-ID, APS
Approach

In-situ structure characterization during thermal-mechanical loading

Combining mechanical testing and strain mapping
Collaborations

- **Project Lead – Caterpillar, Inc.**

- **Caterpillar & GM**
 - ANL will characterize microstructures for structure/property correlations for optimized alloy compositions and processing variables. Validate mechanical performance of the alloy(s) by in-situ fatigue testing.

- **Northwestern Univ. & Univ. of Iowa**
 - Validate Integrated Computational Materials Engineering (ICME) modeling efforts by using high energy x-ray tools. Specifically, phase and microstructures, residual stresses based on geometry-specific casting simulations, cooling rates, etc.

- **Caterpillar/Questek/University of Alabama**
 - Working on another project related to cast iron development.

- **Air Force Research Lab**
Conclusions

- ANL role in the overall project is: (a) characterization of alloy microstructures and (b) support ICME activity.

- Several high-energy x-ray techniques have been identified for this project. Preliminary baseline experiments on some of the techniques have been initiated.

- Results of phase evolution study will be crucial in alloy development. Optimization of the controlled cooling rates to achieve desired phase/microstructures will be a key parameter.

- Microstructure interaction/evolution under thermal-mechanical loading will provide critical information for alloy composition optimizations/flaw initiation and crack growth for overall mechanical performance enhancements.