

Proudly Operated by Battelle Since 1965

2014 Annual Merit Review

High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks

YURI HOVANSKI

Pacific Northwest National Laboratory

June 18, 2014

This Presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID #LM075

Project Overview

Project Timeline

- Start: FY2012
- Finish: FY2014
- 85% complete

Budget

- Total project funding
 - DOE \$0.9 M
 - Industrial cost share >\$1.5M
- FY12 Funding \$300k
- FY13 Funding \$300k
- FY14 Funding \$300k

Technology Gaps/Barriers

- Capacity to rapidly join Al sheet in dissimilar thicknesses and alloys is not developed.
- Supply chain doesn't exist for high volume joining of automotive aluminum sheet.
- Characterization of post-weld formability must be tied to the process to allow the entire supply chain to successfully integrate the technology.

Partners

- **OEM**
 - **G**M
- Tier I Supplier
 - TWB Company LLC
- Material Provider
 - Alcoa

Relevance: Project Motivation

Proudly Operated by Battelle Since 1965

- By 2015, demonstrate a costeffective 50% weight reduction in passenger-vehicle body and chassis systems
 - Critical technology gaps in all advanced materials systems must be overcome to meet the multi-material lightweight vehicle challenge
 - Multi-material joining was identified as a key technology gap
 - Aluminum is a near-term material solution for lightweighting
 - Aluminum welded panels provide further potential for weight reduction

Front Door Inner Example	Steel –TB 1.4 / .7 mm	Al – Assembly	AL – TB 2.0 / 1.1 mm
Gross Weight	14.5 kg	9.0 kg	7.4 kg
Net Weight	11.6 kg	6.8 kg	6.6 kg
Material cost (\$1.25/kg vs \$4.50/kg)	\$18.13	\$40.50	\$33.30
Blanking & Welding	\$3.12	\$.70	\$5.85
Stamping	\$2.00	\$3.60	\$2.80
Assembly	\$0	\$3.00	\$0
Total Cost	\$23.25	\$47.80	\$41.95
Net Weight Savings*	n/a	4.8 kg	5.0 kg
Cost / kg saved**	n/a	\$5.11	\$3.74

Relevance: Goals and Objectives

- Enable more wide-spread use of mass-saving aluminum alloys.
- Develop joining technology needed for high speed fabrication of Al-TWBs.
- Introduce AI TWBs into the high volume automotive supply chain.

Evaluating Laser – single spot & double spot, laser-hybrid, and friction stir welding

Project Schedule and Progress

Proudly Operated by Battelle Since 1965

		FY2012			FY2013				FY2014				
	Quarter	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Task 1: Weld development of dissimilar aluminum alloys												
	1.1. Dissimilar thickness 5XXX series weld development												
	1.2. Dissimilar alloy 5XXX series to 6XXX series weld development												
	1.3. Dissimilar alloy 5XXX series to 7XXX series weld development												
	Task 2: Formability screening of dissin	nilar alu	ıminun	n alloys	5								
	2.1. Coupon Production												
	2.2. Formability Screening												
🔨 FY13 Go/No-Go 💻	Decision Gate												
	Task 3: Production readiness and technology deployment												
🔨 FY13 Milestone 💻	3.1. High speed weld development												
	3.2. Technology transfer												
🛛 🕂 FY14 Milestone	3.3. Probabilistic evaluation of alloy/thickness combinations												
	3.4. Component forming Model												
	Task 4: Prototype Development and Co	ompone	nt Test	ing									
FY14 Milestone	4.1. Component production												
FY14 Milestone	4.2. Formability validation & stamping												
	4.3. Production durability testing												

Relevance: Project Milestones

DOE							
Significance	Month/Year	Milestone or Go/No-Go Decision					
Method Downselect	Sept. 2012 Progress Milestone	Complete Initial Joining Comparison Evaluate the performance of best in class laser, laser/hybrid and FSW for joining dissimilar thickness aluminum TWBs.					
Downseleet	May 2013 Decision Gate	Down-select Joining Method					
High Speed Development	Sept 2013 Progress Milestone	Initiate high speed weld development Develop weld parameters demonstrating a 30% increase in weld speed with reduction in formability or other quality criteria.					
Technology	March 2014 Formability limits	Probabilistic formability evaluation Evaluate post-weld formability to determine statistically modeled formability limitations for use in FEA models.					
Transfer	June 2014 Tech Transfer	Produce welded door panels at GM and TWB for component welding and demonstration 20 door stampings in AA5182 and AA6022 (2mm to 1mm)					
	Sept 2014 Validate FEA models	Validation of component forming Utilizing statistical formability limits validate FEA models with strain data obtained from actual stampings					

Technical Approach

Task 1: Weld development of dissimilar aluminum alloys

- Task 1.1. Dissimilar thickness 5XXX series weld development
 - Evaluate current welding methods for welding dissimilar thickness
- Task 1.2. Dissimilar alloy 5XXX series to 6XXX series weld
 - Evaluate current welding methods for welding dissimilar alloy
- Task 1.3. Dissimilar alloy 5XXX series to 7XXX series weld development
 Evaluate FSW for high strength alloy combinations

Task 2: Formability screening of dissimilar aluminum alloys

- Task 2.1. Coupon Production
- Task 2.2. Formability Screening
 - Decision Gate:
 - Determine the appropriate welding method from laser, laser-hybrid, laserplasma, & FSW

Technical Approach (con't)

Proudly Operated by **Battelle** Since 1965

Task 3: Production readiness and deployability

- Task 3.1. High speed weld development
 - Task 3.2. Technology transfer
 - Transfer welding technology into the supply chain (TWB Company)
- Task 3.3. Probabilistic evaluation of alloy/gauge combinations
- Task 3.4. Component forming Model
 - Feed forward probabilistic bounds into the forming model to more accurately predict weld failures in the stamping process

Task 4: Prototype Development and Component Testing

- Task 4.1. Component production
- Task 4.2. Formability validation & stamping
- Task 4.3. Production durability testing

Technical Accomplishments: High Speed Weld Development

- Design of Experiment approach to high speed FSW
 - 36 tool designs (3 pin lengths, 3 pin features, 2 shoulder features, 2 shoulder to pin diameters)
 - Control Variables (3 plunge depths, 2 tool tilts, 2 anvil tilts, 3 RPMs

Pin with 3 Flats Double scrolled shoulder, Shoulder to pin ratio (S/P) =3

Pin with 3 Flats Single scrolled shoulder, Shoulder to pin ratio (S/P) =2.5

#	Plunge Depth	Tool Tilt	Anvil Tilt	Shoulder /Pin Ratio	Scroll	RPM	Pin Feature	Pin Length	Strength, MPa	% Elong.	LDH, mm	Ra, Rmax
1	Deep	one	tangent	low	2	1950	flats	2	297.7	12.4	20.8	29.4, 33.7
2	Deep	one	less	low	1	1500	taper	2	297.5	11.9	20.90	36.3, 47.8
3	Shallow	zero	tangent	low	1	1500	flats	1.75	294.4	11.2	18.0	87.8, 96.3

Technical Accomplishments: High Speed Weld Development

- Normalized plots weighted based on tensile strength, post-weld formability, surface quality, and weld flash
- Shoulder to pin diameter ratio had the largest single effect
- Pin length & features showed specific favorable regions
 - Interaction show pin length and plunge depth linked
- Tool tilt was critical for higher RPM welds
- Evaluation completes FY13 milestone

Technical Accomplishments: Probabilistic Formability Limits

- 30 sets of tensile coupons prepared to evaluate available strain in dissimilar thickness welded aluminum blanks
 - Transverse & longitudinal
- Speckle pattern interferometry
 - Strain evaluation
 - Determines maximum safe strain available to each specimen
 - Max e_{yy} and corresponding e_{xx} are recorded
 - Lagrangian strain conditions
- Completes FY14 milestone

Technical Accomplishments: Probabilistic Formability Limits

- Calculated statistical distribution for the level of imperfection associated with the weld and geometric discontinuity
 - Level of imperfection corresponds with f value for each e_{xx}
- Weibull analysis established for the f-values of each specimen
- Probabilistic formability limit established for safe strain in the production of TWBs (FY14 milestone)

Technical Accomplishments: Component Production at General Motors

Pacific Northwest

Proudly Operated by Battelle Since 1965

- Door panels produced
 - AA5182 (2.0mm to 1.1mm)
 - All at 3m/min
 - AA6022 (2.0mm to 1.0mm)
 - At 3m/min & 6m/min
- Welds tested and passed tensile and bend tests
- Shipped for stamping trials

- Tool drawings, database, and production chain established
- Equipment purchased, on-site, & welding
- Production fixtures for linear welding in place
 - 4 meter lengths at speeds up to 10 meters/min

Proudly Operated by Baffelle Since 1965

Pacific North

Responses to Previous Year Comments

- Question 2: Technical accomplishments and progress toward overall project and DOE goals – the degree to which progress has been made, measured against performance indicators and demonstrated progress toward DOE goals.
 - "the project looks very good; hopefully, in the next phase the team can try to move beyond lab specimens and onto more production representative geometries."
 - Task 4 was specifically designed to demonstrate the technology at full scale at the OEM and in simulated production at the suppliers facility. Full-size door panels have been produced at each site (FY14)

Question 4: Proposed future research –

- "the project team had an ambitious schedule, and the reviewer hopes that all of the associated characterization is also going to be performed."
 - The project team concurs, but with the possibility of actual vehicle implementation in 2015, the success of the project demands ever increasing input from the team members.
- Question 5: Does this project support the overall DOE objectives of petroleum displacement? Why or why not?
 - *"tailor welded AI blanks are a key enabler to further weight reduction in automotive body and closure stampings."*
 - The project was designed to support specific shortcomings related to joining lightweight materials in high volumes, such that implementation could meet the 2015 weight reduction targets.

Question 6: Resources: How sufficient are the resources for the project to achieve the stated milestones in a timely fashion?

"*"the match is growing, which implies that the project team underspecified the budget."*

• The agreed upon match of the suppliers was a minimum of 50/50 with the DOE. The understanding from the beginning was that marked successes would lead to increased investment by the team partners.

Collaborations

Proudly Operated by **Battelle** Since 1965

University Collaborators

- Washington State University
 - Characterization and analysis of process on properties

Private Collaborations (complete automotive supply chain)

- General Motors
 - Laser Welding Evaluation, Formability Modeling & Durability
 - High Speed FSW Feasibility
- TWB Company, LLC.
 - Welding, stamping evaluation, high volume production,
- Alcoa

Material provider, high temperature material properties, formability

Remaining Challenges and Barriers

- Successful handoff to the supplier
 - Capability & know-how to succeed with a variation of alloys and thicknesses
- Predictive design tools to OEMs to accurately design for welded and stamped aluminum components
- Validation of modeling efforts based on actual parts

Proposed Future Work

- Spring 2014: Formability & Stamping (FY14 milestones)
 - Stamp full size door inner panels produced at GM & TWB in dissimilar thickness AA5182 & AA6022 welded at 3 m/min
 - Stamp full size door inner panels produced at GM & TWB in dissimilar thickness AA6022 welded at 6 m/min
- Spring 2014: Complete Technology Transfer
 - Supplier kick-off and demonstrations for OEMs
 - Ready for high volume production of aluminum TWBs
- Summer 2014: Component Forming Model (FY14 final milestone)
 - Feed data from probabilistic forming limit established for AA5182 and AA6022 dissimilar thickness welds into component forming models
 - Validate stamping results from stamping trials
 - Supply predictive forming guide for future design needs
- Propose follow-on work in high speed joining of dissimilar aluminum alloys
 - Joinability and forming challenges of dissimilar alloy welded blanks

Project Summary

- Project developed high volume supply chain for aluminum tailor welded blanks
 - Successful technology transfer from National Lab to automotive supplier
 - Supported from OEM and material provider to assure success & support
 - Millions invested from project partners based on measured & staged demonstrated success of the project
- Demonstrated high speed friction stir welding of dissimilar thickness combinations in various aluminum alloys
 - Weld speeds to 6 m/min in dissimilar thickness
 - Higher speeds demonstrated by supplier in similar thicknesses
 - Pushed the technology beyond the previous state-of-the-art to facilitate high volume production needs
- Predictive tools and weld development were completed for similar alloy welding; however, dissimilar alloy development remains a significant challenge.

Technical Back-Up Slides

Proudly Operated by Battelle Since 1965

Initial Taguchi DOE: Welds at fixed 3 m/min

- Plunge Depth
 - High (1.85-mm), Low (2.00-mm)
- Tool Tilt
 - High (1°), low (zero tilt)
- Anvil Tilt
 - Tangent (3.82°), less (3.00°)
- Pin Diameter
 - High (2.5:1 S/P ratio), Low (3:1 S/P ratio)
- Number of Shoulder Scrolls (2 or 1)
- Rotational Velocity
 - High (1950), Med (1500), Low (1100)
- Pin Features
 - Taper, Flats, Threads
- Pin Length
 - 1.5-mm, 1.75-mm, 2.0-mm

Technical Backup: Limited Dome Height Testing

- Formability Screening of dissimilar thickness welded blanks
 - Height & load at failure measured
 - Predicted failure was outside weld in the thin sheet for 2-mm to 1-mm joints
 - Failure related to geometric discontinuity rather than the weld

5% Load Drop Condition to Stop Test

Technical Backup : Applying Weld Quality Specifications

Single Spot - Concavity

Twin Spot - Undercut

Twin Spot - Mismatch

Technical Backup : Down Selecting a Joining Technology

- FSW maintained the highest formability in LDH screening tests
 - Laser twin spot (across the joint) performed similarly at higher weld speeds
 - Weld materials
 - 2.0-mm 5182-O to 0.9-mm 5182-O
- LDH screening tests alone were insufficient to determine most suitable welding method

Weld Process	Dome Height (mm)	Concavity (Z/X ≤ 0.2)	Convexity (Z/X ≤ 0.1)	Mismatch (Y/X ≤ 0.1)	Undercut (Angle ≥ 90°)
Single Spot	11.7 ± 0.3	0.22 - 0.23	/	/	/
Twin Spot (across weld)	15.1 ± 0.4	/	/	0-0.21	116 - 180
Twin Spot (along weld)	14.3 ± 1.0	0.19 - 0.36	/	0.12 - 0.25	51 - 180
Laser- Plasma	11.9 ± 4.0	0-0.28	0.31 - 0.69	/	/
FSW	15.4 ± 0.5	/	/	/	/
FSW	15.4 ± 0.5				
					24

Technical Backup : Numerically Driven Evaluation

- DOE designed to evaluate the statistical effects of 8 factors
 - Quantify the responses to the following:
 - Surface roughness & Flash
 - Weld #29 (25µm)
 - Weld #36 (15µm)
 - Formability
 - Mechanical Properties
 - Repeatability, failure mechanism, values

2000.0

