Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

PI: Adam C. Powell, IV
Presenter: Steve Derezinski
INFINIUM, Inc.
June 18, 2014
Project ID: LM035

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
TIMELINE
Project start date: 10/1/2011
Project end date: 12/31/2015
Percent complete: 65%

BUDGET
Total project funding: $12M
- $6M DoE
- $6M INFINIUM

Budget Period 1
- $2,000,000 DoE
- $2,027,924 INFINIUM

Budget Period 2
- $2M DoE
- $2M INFINIUM

Budget Period 3
- $1M DoE
- $1M INFINIUM

BARRIERS
Clean & cost-effective magnesium production

PARTNERS
Praxair, Inc.
Kingston Process Metallurgy
Boston University
Exothermics, Inc.
Spartan Light Metal
Cosma International, Automotive
Partnerships Canada

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Objectives

• Scale up INFINIUM’s primary magnesium production from laboratory demonstration to pre-production pilot plant

• Budget Period 2
 ▪ Design, build, & test beta prototype
 ▪ Achieve prototype-scale anode manufacturing
 ▪ Produce magnesium; make & test parts
 ▪ Model plant costs, energy use, & emissions
Increased Energy Security Reduced Emissions

Reduced Dependence on Foreign Oil

Increased Fuel Efficiency

Lightweight Vehicles

Domestic, Clean, Cost-Effective Magnesium

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Approach

Phase 1: Alpha Prototype
- Design, build, & test alpha prototype
- Optimize anode design
- Calculate costs, energy use, & emissions
- Produce & test magnesium
- Initiate plant design

Phase 2: Beta Prototype
- Design, build, & test beta prototype
- Achieve prototype-scale anode manufacturing
- Produce magnesium; make & test parts
- Model plant costs, energy use, & emissions

Phase 3: Prototype Operation & Plant Design
- Develop automated processes for alpha & beta prototypes
- Prepare for plant-scale anode manufacturing
- Produce & test magnesium automotive parts
- Model full lifecycle costs, energy use, & emissions

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Approach

<table>
<thead>
<tr>
<th>Due</th>
<th>PHASE 1 MILESTONES</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 2012</td>
<td>Conduct electrolysis in alpha</td>
<td>Complete</td>
</tr>
<tr>
<td>Nov 2012</td>
<td>Demonstrate stable, O_2-producing anode assembly</td>
<td>Complete</td>
</tr>
<tr>
<td>Nov 2012</td>
<td>Calculate economically viable costs, energy use, & emissions</td>
<td>Complete</td>
</tr>
<tr>
<td>Nov 2012</td>
<td>Achieve sufficient purity to meet Mg alloy specifications</td>
<td>Complete</td>
</tr>
<tr>
<td>Nov 2012</td>
<td>Identify potential plant site(s)</td>
<td>Complete</td>
</tr>
</tbody>
</table>
Approach

<table>
<thead>
<tr>
<th>Due</th>
<th>PHASE 2 MILESTONES</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 2013</td>
<td>Conduct electrolysis in beta</td>
<td>Extended to Jun 2014</td>
</tr>
<tr>
<td>Nov 2013</td>
<td>Produce sufficient anode assemblies for prototypes</td>
<td>Complete</td>
</tr>
<tr>
<td>Nov 2013</td>
<td>Provide sufficient Mg for tensile testing</td>
<td>Extended to Oct 2015</td>
</tr>
<tr>
<td>Nov 2013</td>
<td>Model plant site</td>
<td>Complete</td>
</tr>
</tbody>
</table>
Approach

<table>
<thead>
<tr>
<th>Due</th>
<th>PHASE 3 MILESTONES</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 2014</td>
<td>Achieve industry uptime standard for prototypes</td>
<td>Extended to Nov 2015</td>
</tr>
<tr>
<td>Nov 2014</td>
<td>Demonstrate scalable anode assembly manufacturing</td>
<td>Extended to Nov 2015</td>
</tr>
<tr>
<td>Nov 2014</td>
<td>Demonstrate satisfactory Mg performance in automotive parts</td>
<td>Extended to Nov 2015</td>
</tr>
<tr>
<td>Nov 2014</td>
<td>Model Mg process economics</td>
<td>On Schedule</td>
</tr>
</tbody>
</table>

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Technical Accomplishments & Progress

Phase 2
• Design, build & test prototypes
 • Anode optimization & manufacturing
 • Produce Mg; make & test parts
 • Model plant costs, energy use, emissions

Alpha 2.0 Specifics
• 1 Electrolysis Site
• Continuous Mg condenser w/ successful pours
• Longest continuous uptime 672 hrs

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Technical Accomplishments & Progress

Integrated Anode-Cathode
- Low anode-cathode distance
- Integrates argon bubble curtain
- Promotes fast oxide ion mass transfer to anode
- Facilitates tube hot-swapping

Phase 2
- Design, build & test prototypes
- Anode optimization & manufacturing
- Produce Mg; make & test parts
- Model plant costs, energy use, emissions

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Technical Accomplishments & Progress

Phase 2
- Design, build & test prototypes
 - Anode optimization & manufacturing
 - Produce Mg; make & test parts
 - Model plant costs, energy use, emissions

Alpha 3.0 Specifics
- 2 anode-cathode assembly Sites
- Reconfigured condenser for easier casting
- New casting system with controlled cooling
- Longest continuous uptime 2448 hrs

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Technical Accomplishments & Progress

Alpha 3.0 Accomplishments

- Uptime Platform
- Furnace ran continuously for 2448 hrs
- Used same flux for 3168 hrs
- Reduced anode-cathode assembly loading time
- Produced & diecast condensed Mg into solid

Phase 2
- Design, build & test prototypes
- Anode optimization & manufacturing
- Produce Mg; make & test parts
- Model plant costs, energy use, emissions

“Mg Credit Card”
Technical Accomplishments & Progress

Beta 1.0 – NOV 2013

- Scale-up platform
- 4 anode-cathode assembly sites
 - Furnace can hold 10-20 sites
- Increased immersion depth to 12”
- Expanded batch condenser
- Programmable Logic Controller

Phase 2
- Design, build & test prototypes
- Anode optimization & manufacturing
- Produce Mg; make & test parts
- Model plant costs, energy use, emissions

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Technical Accomplishments & Progress

Phase 2
- Design, build & test prototypes
- Anode optimization & manufacturing
- Produce Mg; make & test parts
- Model plant costs, energy use, emissions

Pure Oxygen Anode™ Assembly

Current Collector
Anode Liquid
Membrane
Flux
Cathode Cage

O₂⁻
Mg²⁺
e⁻
Technical Accomplishments & Progress

Phase 2
- Design, build & test prototypes
- Anode optimization & manufacturing
- Produce Mg; make & test parts
- Model plant costs, energy use, emissions

Diagram:
- Flux Equilibrium
- Static Exposure
- Semi-Static Test
- LTAPe (vacuum) Electrolysis
- Atmospheric Electrolysis

Vendor A tubes:
2 powders, opt post-process

Vendor B tubes:
2 powders, opt post-process

Vendor C tubes:
2 powders, opt post-process

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Technical Accomplishments & Progress

Static Zirconia Tests
Samples soaked at 1150C

Phase 2
- Design, build & test prototypes
- Anode optimization & manufacturing
- Produce Mg; make & test parts
- Model plant costs, energy use, emissions

Vendor A
- Porosity does not appear to have increased significantly
- Minimal surface degradation

Vendor B
- Severe grain boundary attack throughout entire sample
- Salt appears to have penetrated entire sample

Vendor C
- Lowest internal porosity
- Salt does not appear to have penetrated sample
- Band of slight intergranular porosity needs further study

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Technical Accomplishments & Progress

“Top Hat”

Phase 2
- Design, build & test prototypes
- Anode optimization & manufacturing
- Produce Mg; make & test parts
- Model plant costs, energy use, emissions

Semi-Static Testing Prototype
- 6 different full-length tubes & flux combinations simultaneously
- Correlate tube electrochemical performance to changes in salt composition before, during, & after soaking

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Zirconia Manufacturing
- In-house tubes 99.5% dense, exceed best COTS tubes at 97%
- Acquired sintering furnace onsite w/ 100% yield
- Maintaining inventory of COTS tubes, plus tubes manufactured in-house from 3 powder compositions
Technical Accomplishments & Progress

Inert Anode Current Collector

- Fabricated hybrid LSM/nickel current collectors capable of running for extended periods of time in an oxygen atmosphere
- Mass spectrometry detected negligible impurities in oxygen gas from anodes

Phase 2

- Design, build & test prototypes
- Anode optimization & manufacturing
- Produce Mg; make & test parts
- Model plant costs, energy use, emissions

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Phase 2
- Design, build & test prototypes
- Anode optimization & manufacturing
- Produce Mg; make & test parts
- Model plant costs, energy use, emissions

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Cost Modeling

- Silver evaporation model shows silver losses ~0.76¢/kg Mg product, silver can be recaptured
- Plant Narrative describes cell layout, power supplies, cast house, etc. for detailed heat balance and cost model

Also in progress:

- Detailed capital cost model, coming in well below earlier estimates
- Detailed heat balance
- Sensitivity analysis

Using cost modeling to drive R&D
Collaboration & Coordination w/Other Institutions

- **Kingston Process Metallurgy**: contract R&D including transparent crucible electrolysis, salt recycling
- **Boston University**: contract R&D including current collector, salt-metal interactions, current efficiency improvements
- **Praxair**: process gases, argon recycling R&D, thermal modeling
- **Exothermics**: zirconia production/analysis, current collector R&D
- **Spartan Light Metals**: product testing by die-casting tensile specimens and other parts
- **Vehma**: product testing including die-casting vehicle components and testing those components in vehicle structures
Proposed Future Work

Phase III Tasks

- Develop automated processes for Alpha & Beta prototypes
- Prepare for plant-scale anode manufacturing
- Produce & test magnesium automotive parts
- Model full lifecycle costs, energy use, & emissions
• Powell, Adam “Systems Engineering for Scale-Up of the INFINIUM™ MagGen™ Primary Magnesium Production System,” Reactive Metal Workshop March 8, 2013.
• Guan, X. et al. “LSM (La0.8Sr0.2MnO3-δ)-Inconel Inert Anode Current Collector for Solid Oxide Membrane (SOM) Electrolysis” J. Electrochem Soc. 160(11):F1179-F1186, 2013.

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Summary

• Significant progress: prototype engineering, anode-cathode assembly, anode fabrication

• Focus on longer term Anode operation

• Larger-scale operation and production in plans for 2014-2015