New High-Energy Electrochemical Couple for Automotive Applications

K. Amine (PI)

H. Wu, A. Abouimrane, Z. Chen, J. Lu, R. Xu, C.K. Lin and Y.C. Kan

Argonne National Laboratory
DOE merit review
June 15th ~20th, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project ID: ES208
Overview

Timeline
- Start - October 1st, 2013.
- Finish - September 30, 2015.
- 15% Completed

Barriers
- Barriers addressed
 - High energy (>200wh/kg)
 - Long calendar and cycle life
 - Abuse tolerance

Budget
- Total project funding
 - DOE share: 2500K
- Funding received in FY13: 1250K
- Funding for FY14: $1250 K

Partners
- **Project lead:** Khalil Amine
- **Interactions/ collaborations:**
 - X. Q. Yang (BNL) diagnostic of FCG cathode and SEI of Si-Sn composite anode
 - G. Liu (LBNL) development and optimization of conductive binder for Si-Sn composite anode
 - ECPR: provide baseline cathode material
 - Utah University: provide facility to scale up the baseline Si-Sn composite anode for baseline cell
 - Andy Jansen & Polzin, Bryant (ANL) fabrication of baseline cell
 - Paul Nelson (ANL) design of cell using BatPac
Objectives of the work

- Develop a new high energy redox couple that provide
 - Over 200wh/kg energy density
 - Long cycle life (> 1000 cycle)
 - Excellent abuse tolerance
Relevance

- Objective: develop very high energy redox couple (250wh/kg) based on high capacity full gradient concentration cathode (FCG) (230mAh/g) and Si-Sn composite anode (900mAh/g) with long cycle life and excellent abuse tolerance to enable 40 miles PHEV and EVs.

- This technology, if successful, will have a significant impact on:
 - Reducing battery cost and expending vehicle electrification
 - Reduce greenhouse gases
 - Reduce our reliance on foreign oil
Milestones

- **May 2014**
 - Deliver 12 baseline cells

- **September 2014**
 - Finalize engineering of electrodes based on 50 wt% SiO-50 wt% Sn$_{30}$ Co$_{30}$C$_{40}$ and conductive polymer binder (PFFOMB), fabricate cells and finalize test

- **September 2014**
 - Finalize the optimization of Gen 1 FCG cathode

- **October 2014**
 - Fabricate Gen1 cell based on Gen 1-FCG cathode and 50 wt% SiO-50 wt% Sn$_{30}$ Co$_{30}$C$_{40}$ anode with conductive polymer binder (PFFOMB)
ANODES
SiO-Sn\textsubscript{y}Co\textsubscript{1-x}Fe\textsubscript{x}C\textsubscript{z} composite coupled with conductive binder

ELECTROLYTES
High voltage electrolytes with additives to stabilize interface of cathode and anode

CATHODES
Full Gradient concentration (FCG) LiNi\textsubscript{x}Mn\textsubscript{y}Co\textsubscript{z}O\textsubscript{2} with high concentration of Mn at the surface of the particle

Fluorine based electrolyte with additives:

![Fluorine-based electrolyte](image)

Initial charge & discharge of SiO-SnCoC anode

Conductive binder

Floating test at different voltages of LiNi\textsubscript{0.5}Mn\textsubscript{1.5}O\textsubscript{4}/Li\textsubscript{4}Ti\textsubscript{5}O\textsubscript{12}

Cell using fluorinated electrolyte

Initial charge & discharge of FCG cathode
Approach (cont)

Team configuration

- **LBNL (240K)**
 - Conductive binder optimization

- **ANL (1900K)**
 - Cathode & anode development (Characterization)

- **BNL (360K)**
 - Diagnostic of cathode and anode with in-situ X-ray

DOE Program Manager

- **ANL Cell Fabrication Facility**
- **Khalil Amine**
 - Project Coordinator
- **ANL Material scale up faculty**

- **Ali Abouimrane**
 - Anode Processing
- **Gao Liu**
 - Anode engineering With conductive binders
- **K. Amine**
 - Cathode Development
 - Huiming Wu
 - Cathode processing And cell test
- **Xiao Qing Yang**
 - diagnostic
Recent Accomplishments and Progress

- Scale up 50 wt% SiO-50 wt% Sn_{30} Co_{30}C_{40} anode to 1Kg level for use in baseline cell.
- Acquire 25Kg of LiNi_{0.6}Mn_{0.2}Co_{0.2}O_{4} cathode for use in baseline cell.
- Engineer cathode & anode electrodes using conventional PVDF binder, build a full baseline cell and carry out cycling test.
- Set up CSTR co-precipitation reactor for carrying out full concentration gradient (FCG) cathode development.
- Successfully prepare dense FCG cathode using hydroxide process (2.7g/cc).
- Confirm thermal stability of FCG cathode using Synchrotron soft X-ray at different temperatures.
Baseline chemistry

ANODES
50 wt% SiO-50 wt% Sn₃₀Co₃₀C₄₀ coupled with UBE U-Varnish A binder

ELECTROLYTES
1.2M LiPF₆ in EC:EMC (3:7 wt%) with 10 wt% FEC

CATHODES
LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂ from ECOPRO

EDAX & PDF of anode
showing possible alloying between Si and Sn

VOLTAGE PROFILE

CYCLE PERFORMANCE

Graphs and Diagrams

- Voltage profile
- Cycle performance
- Capacity vs. cycle number
- EDAX and PDF images of anode
- Elemental mapping of Si, O, Co, C, Sn
Baseline cell Chemistry and design

• **Anode:**
 - 90 wt% SiO-SnCo-C; 5 wt% Timcal C-45; 5 wt% UBE U-Varnish A
 - Total Electrode Thickness: 13 microns
 - Cu Foil Thickness: 10 microns
 - Total Electrode Loading: 2.41 mg/cm³
 - Porosity: ~45%

• **Cathode:**
 - 90 wt% ECOPRO NCM 622; 5 wt% Timcal C-45; 5 wt% Solvay 5130 PVDF
 - Total Electrode Thickness: 77 microns
 - Al Foil Thickness: 20 microns
 - Total Electrode Loading: 14.83 mg/cm³
 - Porosity: ~36%

• **Separator:**
 - Celgard® 2325 PP/PE/PP Tri-Layer

• **Electrolyte:**
 - Tomiyama Pure Chemicals -1.2M LiPF₆ in EC:EMC (3:7 wt%) with 10 wt% Solvay FEC

• Coin Cell work done in 2032 sized cells
Initial result of baseline cell using button cells

Formation Voltage Profile, (AAKA14)

Efficiency vs cycles:

Cycle life:

HPPC Test with 3C/2.25C Pulse:
Voltage Profile

- 3.0C Disch. Pulse
- 2.25C Chrg. Pulse

HPPC ASI vs DOD
- AAKA13b Charge ASI
- AAKA13b Discharge ASI
Usable Energy and power of baseline cell based on BatPac Design

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Device</th>
<th>Battery Performance (Cell Level)</th>
<th>Technology Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>20Ah Cell</td>
<td>Usable Specific Energy (Wh/kg)</td>
<td>Si-Sn Composite</td>
</tr>
<tr>
<td></td>
<td>(~216)</td>
<td>Usable Energy Density (Wh/l)</td>
<td>And NMC (6:2:2)</td>
</tr>
<tr>
<td></td>
<td>(~271)</td>
<td>Power at SOCmin (W/kg, 10 sec)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40Ah Cell</td>
<td>(~511)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(~650)</td>
<td>(~1880)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BatPac Design</td>
<td>(~1177)</td>
<td></td>
</tr>
</tbody>
</table>
Synthesis of Full Gradient Concentration (FCG) Precursor via CSTR Co-precipitation

Mn Solution

Ni Solution

V

Na₂CO₃, NH₄OH

Reactor

Co-Precipitated Particles

pH controller

Pumps

Reactor

Collection
Cross section EPMA of precursor and (FCG) from Carbonate Process

Precursor $\text{Li}[\text{Ni}_{0.65}\text{Co}_{0.15}\text{Mn}_{0.25}]\text{O}_2$

Oxide

Tab density: 2.2g/cc
Electrochemical performance of FCG cathode

Initial cycling at 30°C and 55°C

Cycling performance of FCG at 30°C and 55°C

Low temperature performance of FCG
DSC of Charged FCG and LiNi$_{0.6}$Co$_{0.15}$Mn$_{0.25}$O$_2$ (Core) Having the Same Composition

FCG average composition: LiNi$_{0.6}$Co$_{0.15}$Mn$_{0.25}$O$_2$
Characteristics of FCG Precursor Made From Hydroxide Process

1. High Tap density = 2.2 g/cc

2. Good particle distribution: $D_{50} = 11.64 \, \mu m$

3. Average composition is: $\text{Ni}_{0.6}\text{Co}_{0.2}\text{Mn}_{0.2}(\text{OH})_2$

4. Outer is about: $\text{Ni}_{0.46}\text{Co}_{0.23}\text{Mn}_{0.41}(\text{OH})_2$

5. Inner is about: $\text{Ni}_{0.8}\text{Co}_{0.1}\text{Mn}_{0.1}(\text{OH})_2$

X-ray of $\text{Ni}_{0.6}\text{Co}_{0.2}\text{Mn}_{0.2}(\text{OH})_2$

Particle distribution of $\text{Ni}_{0.6}\text{Co}_{0.2}\text{Mn}_{0.2}(\text{OH})_2$

1. High Tap density = 2.2 g/cc

3. Good particle distribution: $D_{50} = 11.64 \, \mu m$

4. Average composition is:
 - Outer is about: $\text{Ni}_{0.46}\text{Co}_{0.23}\text{Mn}_{0.41}(\text{OH})_2$
 - Inner is about: $\text{Ni}_{0.8}\text{Co}_{0.1}\text{Mn}_{0.1}(\text{OH})_2$
Characteristics of FCG Gradient Cathode Made From Hydroxide Process

SEM of LiNi$_{0.6}$Co$_{0.2}$Mn$_{0.2}$O$_2$

1. High Tap density = 2.7 g/cc

3. Particle distribution: D$_{50}$ = 11.64 µm (unchanged)

4. Average composition is: LiNi$_{0.6}$Co$_{0.2}$Mn$_{0.2}$O$_2$
 - Outer is about: LiNi$_{0.46}$Co$_{0.23}$Mn$_{0.41}$O$_2$
 - Inner is about: LiNi$_{0.8}$Co$_{0.1}$Mn$_{0.1}$O$_2$

X-ray of LiNi$_{0.6}$Co$_{0.2}$Mn$_{0.2}$O$_2$
TEM of Full Gradient Concentration Cathode made from Hydroxide Process

TEM image along with energy-dispersive X-ray spectroscopy (EDS) data for a single elongated CCG primary particle

TEM image and the corresponding electron diffraction pattern from a CCG primary particle, illustrating the crystallographic alignment of the primary particle in the radial direction.
Initial Electrochemical Performance of FCG Gradient Cathode from Hydroxide Process

VOLTAGE PROFILE

- Initial Electrochemical Performance of FCG Gradient Cathode from Hydroxide Process
 - 2.75-4.3 V
 - Charge 1
 - Discharge 1

CYCLE PERFORMANCE

- Cycle life: it is very stable at C/3 with 50 cycles at room temperature

Initial cycle: Charge: 202.5 / Discharge: 186.6 mAh/g with 92.1% efficiency at C/5
The thermal stability of NCA and FCG charged to 4.5V using synchrotron soft X-ray at different temperatures.

- The FCG sample shows less oxygen release than bulk NCA samples.

The first cycle capacity of NCA and FCG at 4.5V is around 230mAh/g. The FCG sample showed much better thermal stability.
Responses to Previous Year Reviewers’ Comments

This project is new and was not reviewed last year
Collaborations

• X.Q. Yang of BNL
 - Diagnostic of FCG and SEI of Si-Sn composite electrodes using soft & hard X-ray.

• G. Liu (LBNL)
 - Development and optimization of conductive binder for Si-Sn composite anode

• H. Wu (ANL)
 - Optimize the synthesis of FCG cathode

• A. Abouimrane (ANL)
 - Development of SiO-Sn_yCo_{1-x}Fe_xC_z anode

• J. Lu & Z. Chen (ANL)
 - Characterization of cathode, anode and cell during cycling using In-situ techniques

• ECPRO: Baseline cathode material

• University of Utah: Facility to scale up the baseline Si-Sn composite anode for baseline cell

• A. Jansen & B. Polzin (ANL)
 - Design & fabrication of baseline cell

• Y.K. Sun (ANL/Hanyang University): Technical discussions
Remaining Challenges and Barriers

• Reduce irreversible loss of SiO-SnyCo1-xFexC

• Demonstrate 1000 cycles of SiO-SnyCo1-xFexCz using conductive binder

• Improve further FCG cathode capacity to 220~230mAh/g at high voltage 4.4V and 4.5V

• Demonstrate 250wh/kg at the cell level using improved FCG cathode and SiO-SnyCo1-xFexCz anode.
Future work

• Optimize the ratio of SiO-SnyCo1-xFexC and graphite to reduce irreversible loss

• Optimize SiO-SnyCo1-xFexC electrode with conductive binder to improve cycle life

• Investigate the stability of SEI in SiO-SnyCo1-xFexC and explore additive that provide stable passivation film.

• Synthesize FCG gradient materials with different surface Mn concentration as well as different gradient concentration slopes to determine the detailed effects of the composition profile on cathode capacity and stability.

• Explore further coating FCG cathode with AlF3 to improve cycle life at 4.4 and 4.5V.

• Investigate performance of FCG with high voltage fluorinated electrolyte
Summary

- Baseline cell based on NMC (6:2:2) / 50 wt% SiO-50 wt% Sn₃₀Co₃₀C₄₀ carbon was fabricated and tested.
- Set up of CSTR Co-precipitation reactor for making FCG cathode was successfully implemented.
- Synthesis of FCG using hydroxide process was successfully carried out and spherical particles with very high tap density of 2.7g/cc was obtained which can lead to high loading at the electrode level and increase the energy density of the cell.
- High thermal stability of FCG cathode was demonstrated using synchrotron soft X-ray at different temperatures.
Publications and Presentations

1- Cathode Material with Nanorod Structure “An Application for Advanced High-Energy and Safe Lithium Batteries”
Hyung-Joo Noh, Zonghai Chen, Chong S. Yoon, Jun Lu, and Khalil Amine,*

2- Formation of a Continuous Solid-Solution Particle and its Application to Rechargeable Lithium Batteries
Hyung-Joo Noh , Seung-Taek Myung , Hun-Gi Jung , Hitoshi Yashiro , Khalil Amine *,
and Yang-Kook Sun