US-China Clean Energy Research Center Building Energy Efficiency Consortium Advanced Window and Shading Technologies 2014 Building Technologies Office Peer Review



# **ENERGY** Energy Efficiency & Renewable Energy

Eleanor Lee, eslee@lbl.gov Lawrence Berkeley National Laboratory

# **Project Summary**

### Timeline:

- Start date: January 2010
- Planned end date: December 2015

#### Key Milestones

- Develop and evaluate energy impacts of emerging fenestration technologies in LBNL's full-scale outdoor Advanced Windows Testbed, December 2014
- Evaluate energy use and occupant response in demonstration buildings, March 2015

## Budget:

Total DOE \$ to date: \$645K, spent \$300K Total future DOE \$: \$200K

#### Target Market/Audience:

Commercial and residential buildings; new or retrofit applications; owners, regulators, utilities, architects, engineers

### Key Partners (in-kind funding):

| Saint-Gobain         | Tongji University |
|----------------------|-------------------|
| Sage Electrochromics | CABR              |
| Dow Chemical         | Chongqing Univ    |
| Lutron               |                   |
| 3M                   |                   |

#### Project Goal:

Identify, develop, and promote the use of energy-efficient window and shading technologies that are pragmatic, cost effective, can be broadly and rapidly deployed in residential and commercial buildings throughout China and the US.



# **Purpose and Objectives**

Context: The US-China Clean Energy Research Center Building Energy Efficiency Consortium (CERC-BEE) is a 5-year program focused on real world impact through early commercialization of technologies, software, guidebooks, codes, policies, & more Problem Statement

- Challenge: 1985-2004: +10 Bm<sup>2</sup> floor area of new construction in China
- Projected growth in China's building energy use from 5 to 13 Quads between 2005 to 2020, where 50-60% due to HVAC and 20-30% due to lighting energy
- Fenestration systems account for a significant fraction of energy use and peak electric demand in the perimeter zone of buildings, drive HVAC sizing and use, and occupant comfort and satisfaction with the indoor environment.
- Achieving ultra-low energy goals will depend on managing the significant loads that occur through facades and leveraging daylight to offset lighting energy use.

#### **Project Objective**

 To identify, develop, and promote the use of energy-efficient window and shading technologies that are pragmatic, cost effective, and can be broadly and rapidly deployed in residential and commercial buildings throughout China and the US.



#### **Target Market and Audience**

- New and retrofit commercial and multi-family residential buildings in China with an existing total energy use of approximately 3-4 Quads (2005)
   Impact of Project
- Identification of innovative solar control and daylighting technologies that can provide 40-50% perimeter zone total energy savings compared to GB 50189-2005 while meeting comfort constraints in real world building applications.
- Near-term impact:
  - Monitored evaluation of energy use impacts of automated shading and daylighting systems with occupant response data
  - Promote use of international standards for rating window & shading systems
- Long-term impact
  - Energy use savings of 995 TBtu/yr in 2025 assuming a market adoption rate of 50% of the total 20 Bft<sup>2</sup>-yr floor area of new and retrofit construction
  - Reduction in CO<sub>2</sub> emissions of 100 Mtons/yr in 2025, assuming a coal/wood fuel source (1 lb of CO<sub>2</sub> generated per 5000 Btu)



# Approach

- Benchmark technical potential of dynamic shading and daylighting systems in typical commercial buildings in China using advanced modeling tools
- Develop then verify energy savings and comfort impacts of emerging technologies under real sun and sky conditions using LBNL's full-scale outdoor Advanced Windows Testbed
- Promote market awareness through third-party monitored evaluations of energy use and occupant response in demonstration buildings
- Encourage broader adoption of advanced technologies through demonstrated use of ISO-compliant modeling tools in collaboration with industry, academia, and regulating agencies in China



# Approach

### **Key Issues**

- Does taking a whole building integrated approach improve the value proposition of advanced window technologies in the China context
- What is the acceptable balance of tradeoffs between energyefficiency, indoor environmental quality, and occupant satisfaction and acceptance for advanced window technologies

### **Distinctive Characteristics**

- Advanced modeling tools for optically-complex, light-scattering fenestration systems
- Extensive laboratory and field measurement capabilities
- Unique knowledge of state-of-the-art fenestration technologies



# **Benchmarking technical potential**

**Objective**: Benchmark energy savings potential of advanced fenestration systems

### Accomplishments

- Near term solutions: Spectrally-selective low-e windows can reduce sensible cooling and heating <u>loads\*</u> by 30-50% in northern climates compared to GB50189-2005 code. [A]
- Ultra-low energy use solutions: operable exterior shading or equivalent can reduce sensible cooling and heating loads in all climates to a level equivalent to an opaque wall and increase comfort. [B] → Perimeter zone annual energy use can be reduced by 50-80% with a simple payback of 2-6 years for typical commercial office buildings in China, more if daylighting is included.
- \* Loads can be more indicative of actual HVAC energy performance since buildings in China are traditionally conditioned on demand.



EnergyPlus results from Phase I study



# **Characterization and modeling tools**

### Rating and labeling of windows and shading systems

- Training, webinars, workshops, tutorials, and technical papers shared with academia, MoHURD, and industry
- Chinese version of LBNL's WINDOW 6 software rewritten in collaboration with LBNL

### Accomplishments

- MoHURD agreed to begin to adopt ISO 15099 (implemented in WINDOW 6), October 2010
- All 8 Chinese glazing manufacturers now contributing to LBNL International Glazing Database (IGDB); training has led to improved quality of measured data from glazing manufacturers
- WINDOW 6 (called "MQMC") software now being sold by Guangdong (PABR)
- Increased awareness of optically complex fenestration modeling tools for shading & daylighting systems





槽百叶挡板式外遮阳的



DGJ08-107-20 Shanghai Standard



Energy Efficiency & **Renewable Energy** 

8

# Field testing: Automated shading and electrochromic windows

10

8

### LBNL Advanced Windows Testbed field tests

- Saint-Gobain/ Sage Electrochromic windows or Lutron automated indoor roller shades
- April through December 2014 monitored field test

### Objectives

- Evaluate vendors' next-generation control algorithms with focus on daylight/ glare control → high dynamic range luminance imaging
- Measure impact of controls on lighting and HVAC energy use

### **Anticipated Outcomes**

- Possible improvements in sensors and control systems for dynamic façade technologies
- Increased confidence in use of technologies in China demonstration projects



Testbed exterior with EC windows (above) Time-lapsed field measurements of glare in LBNL windows testbed (left)



# Field testing: Integrated dynamic façade systems



#### LBNL Advanced Windows Testbed field test

- Electrochromic windows or automated indoor roller shades, LED dimmable lighting, 24 V dc network, photovoltaics, battery storage
- Proof-of-concept demand-supply side optimization controller
- June through December 2014 monitored field test

#### **Objectives and anticipated outcomes**

- Evaluate feasibility and energy and cost savings potential of very low energy, building-to-grid integrated control system
- Increased value proposition for advanced integrated systems; possible use in Xingye demonstration building
   <sup>10</sup> Energy Efficiency & Renewable Energy

# **Demonstration:** Saint-Gobain Research Shanghai Center Electrochromic Windows

#### **Demonstration building**

- In 2013, developed details of test room construction, equipment, controls, monitoring protocol, instrumentation, human subjects survey, simulation models with Tongji and Saint-Gobain
- SGRS new building completed Dec 2013, movein Feb 2014, initiated baselining, March 2014, EC installed in April 2014
- Monitoring through April 2015
  - HVAC and thermal comfort assessment
  - Daylighting and lighting energy use
  - Occupant response studies (quarterly)

### **Anticipated outcomes**

 Assessment of end user satisfaction and comfort (thermal and visual) under realistic operating conditions in typical office building





SGRS conference room layout with south-facing windows



# **Development/ demonstration: Daylight redirecting films**

**Objective:** develop and deploy technologies that can redirect sunlight 30-40 ft from the window; reduce lighting energy use significantly in core zones

### **Design development (Dow Chemical)**

 Characterization and modeling of microprismatic films using scanning goniophotometer and Radiance simulation tools; demonstration of virtual prototyping tools

### Demonstration (3M)

- Planned installation in CABR building, Beijing
- Measure daylight, visual comfort, and energy savings potential in a typical office area
- Potential outcome: Increased awareness and adoption of the technology







# **Project Integration and Collaboration**

#### **Project Integration**

- Industry partners contribute in-kind technical expertise, knowledge about the China market, and products for testing.
- Collaborations with academics and research organizations provide opportunities to share knowledge about modeling tools, experimental methods, technologies, buildings industry, occupant behavior, regulations, etc.

#### Partners, Subcontractors, and Collaborators

- Industry partners: Saint-Gobain/ Sage Electrochromics, 3M, Lutron Electronics, Dow Chemical, Xingye Solar
- Tongji University, Chongqing University, CABR, Wuhan University of Technology, Zhuhai Singye Green Building Technology Co.

### Communications

- CERC-BEE Workshop, Tsinghua University, Beijing, March 23-24, 2011
- Saint-Gobain Research Center Seminar with Tongji Univ, Shanghai, March 5, 2012
- CERC-BEE Annual Meeting, Sanya, Hainan Island, July 18-20, 2012
- Journal submission, Energy and Buildings 2013 (under review)



#### **Next Steps and Future Plans**:

- Monitored evaluation of energy performance, occupant impacts, and economics of advanced window and daylighting systems in demonstration commercial buildings in hot/cold and hot regions of China
- Improved understanding of occupant response to advanced technologies and impacts on actual building performance in China and the US
- Improvements to advanced technologies based lessons learned in real world building demonstrations



# **REFERENCE SLIDES**



# **Project Budget**

Project Budget: 2010-2014: \$645K total, 2014: \$340K
Variances: Carryover from 2013 due to production delays by Sage
Electrochromics; controls R&D at LBNL and M&V of Shanghai demonstration delayed to 2014.
Cost to Date: 2010-2014: \$307K, 2014: \$28K
Additional Funding: \$200K in-kind contribution from Saint-Gobain, Sage
Electrochromics, Dow Chemical, Lutron Electronics, and 3M (materials, technical support).

| Budget History |                            |                     |            |        |                   |  |  |  |
|----------------|----------------------------|---------------------|------------|--------|-------------------|--|--|--|
|                | <b>-Y2010-2013</b><br>ast) | FY2014<br>(current) |            |        | 12/31/15<br>nned) |  |  |  |
| DOE            | Cost-share                 | DOE                 | Cost-share | DOE    | Cost-share        |  |  |  |
| \$305K         | \$50K                      | \$340K              | \$150K     | \$200K | \$100K            |  |  |  |



# **Project Plan and Schedule**

| Project Schedule                                   |              |                                            |              |              |              |              |              |              |              |              |              |              |
|----------------------------------------------------|--------------|--------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Project Start: January 2010                        |              | Completed Work                             |              |              |              |              |              |              |              |              |              |              |
| Projected End: December 2015                       |              | Active Task (in progress work)             |              |              |              |              |              |              |              |              |              |              |
|                                                    |              | Milestone/Deliverable (Originally Planned) |              |              |              |              |              |              |              |              |              |              |
|                                                    |              | Milestone/Deliverable (Actual)             |              |              |              |              |              |              |              |              |              |              |
|                                                    |              | FY2013 FY2014 FY201                        |              |              |              |              |              | 2015         |              |              |              |              |
| Task                                               | Q1 (Oct-Dec) | Q2 (Jan-Mar)                               | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) |
| Past Work                                          |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q2 Milestone: Initiate Sage and Lutron field tests |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q3 Milestone: Initiate integrated controls test    |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q3 Milestone: Initiate SGRS demonstration          |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q4 Milestone: Initiate Xingye demonstration        |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Current/Future Work                                |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q1 Milestone: complete field tests                 |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q2 Milestone: complete SGRS demonstration          |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Insert more Milestones as needed                   |              |                                            |              |              |              |              |              |              |              |              |              |              |

A Project of CERC-BEE (US-China Clean Energy Research Center Building Energy Efficiency Consortium)

Pioneering U.S. – China Innovation for Widespread Adoption of Very Low Energy Buildings Through Partnerships and Real World Impact



18