This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline
- Current end date: Sept. 2015
- ~53% Complete

Budget
- 1:1 DOE:Cummins cost share
- DOE Funding:
 - FY2012: $300k
 - FY2013: $300k
 - FY2014: $300k

Barriers
- Engine combustion
 - Intake-charge uniformity
 - Combustion uniformity
 - Incomplete combustion
- Engine controls
 - Variability & diagnostics
 - Lower-penalty control methods
 - Diagnostics for demonstration of improved efficiency control methods
- Durability
 - Combustion instabilities
 - Corrosion, erosion etc. from nonuniformity induced condensation

Partners
- ORNL & Cummins Inc.
- Cummins HD SuperTruck project
Objectives & Relevance

Understand Nature of Cylinder Charge Fluctuations
to Accelerate Development
of Advanced Efficiency Engine Systems

Objectives

- Assess fluctuations in cylinder-charge components
 - Internal EGR (residual & rebreathed residual-backflow)
 - External EGR & intake air
- Apply insights to advance development
 - Validate & tune 1-D & 3-D design models
 - Assess specific hardware & architectures
 - Assess control strategies

Relevance – Charge Uniformity impacts:

- Combustion uniformity
- Performance of advanced-combustion strategies (RCCI, PPCI)
- Required engineering margins (efficiency penalty, fuel economy)
- Durability & ultimate efficiency limits across all cylinders
Milestones

2013 Milestones:

- Apply EGR Probe to assess:
 - Spatiotemporal performance of advanced intake architectures,
 - Performance of numerical-simulation design tools used for development
- Follow-on campaign at Cummins to assess design modification
 - Canceled due to budget sequester
 - Alternate engine work at ORNL to forward CRADA goals
- Improve EGR Probe based on campaign findings:
 - Resolved probe-to-probe variations

2014 Milestone (on schedule for timely completion):

- Specify second laser for quantifying intake & residual-backflow CO$_2$ (Q1)
 - i.e., external & internal EGR
- Assess methods for differentiating intake and residual-backflow CO$_2$. (Q2)
 - Measure H$_2$O, Temperature & CO$_2$
- Bench-level demonstrate of method for CO$_2$ differentiation. (Q3)
- Method assessment for measuring cylinder-residual variations. (Q4)
Global Approach for Improving Energy Security

Develop & apply advanced diagnostics for engine-system characterization to enable: **model validation, hardware development & controls for fuel-efficient engines**
Develop diagnostic to directly characterize backflow & external EGR-Air
- CO₂, H₂O, Temperature

Develop procedure to determine net-charge nature from components
- Directly measure residual backflow & external-EGR-Air
- Characterize residual from backflow measurements & models
- Weighted temporal integration to determine net-charge characteristics

Apply at Cummins to characterize cylinder-charge dynamics
- Spatial & temporal backflow mapping
- Assess design tools
- Assess advanced control strategies for viability & efficiency gains

Accelerate development of low-cost Clean, Fuel-Efficient & Durable engines.
Technical Progress: *Summary*

- **Background: Laser-based Multiplex EGR Probe**
 - 4 simultaneous probes – faster & more extensive mapping
 - Improved sensitivity, linearity and temporal resolution

- **Characterizing Charge Components & Fluctuations**
 - Directly measure residual backflow & external EGR
 - Measurements & models to identify cylinder-residual nature
 - Assessing cylinder charge & advanced control strategies

- **Developing Multi-Color Multi-Species EGR Probe**
 - Measures CO₂, H₂O & Temperature of cylinder-charge components
 - Quantifies both hot (backflow) and cool (external EGR) species
 - Improved characterization of cylinder charge

- **New EGR Probe Tip for End-On-Flow Orientations**
 - Enables measurements down intake runner behind intake valve

- **Applications planned for CRADA & SuperTruck projects**
 - July (SuperTruck) & October (CRADA)
Technical Progress: Backflow Proof-of-Principle Measurements

- **Single-cylinder Research Engine**
 - Modified 2.0L gasoline Ecotec engine
 - Three cylinders disabled
 - Laboratory air handling system

- **Fully variable valve actuation**
 - Enables broad residual-backflow variations
 - Excellent demonstration capability

Single-cylinder engine geometry specs

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore (mm)</td>
<td>86.0</td>
</tr>
<tr>
<td>Stroke (mm)</td>
<td>86.0</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>11.85</td>
</tr>
<tr>
<td>Fuel injection system</td>
<td>Direct injection, side-mounted</td>
</tr>
</tbody>
</table>
Technical Progress: Backflow & EGR Fluctuations Measured

Valve overlap-timing sweep
- Backflow varies with overlap timing
 - Piston moving up at 40BTDC
 - Piston moving down at 20BTDC
- Cycle-specific backflow events
 - Varies from cycle to cycle
 - Different CO₂ pulse levels

Residual Backflow vs. External EGR
- EGR creates CO₂ baseline
- Backflow creates CO₂ pulse
- Relate backflow to cylinder residual
 - Via heat-transfer & other models
- Integrate Backflow & External EGR
 - Weight by crank-angle displacement

Backflow and External EGR Timing & Magnitude Measured
Technical Progress: Develop Multi-Color Multi-Species EGR Probe

Diagnostic Advances Required
- CO₂ via single P(22) line
 - Absorption ∝ [CO₂] & Temp.
 - External EGR: Cool CO₂
 - Will underestimate Hot CO₂
- Need temperature correction
 - Backflow will be hot
- Add H₂O diagnostic
 - 2nd laser scans over 5 lines
 - Lines varying Temp sensitivity
 - Determine [H₂O] & Temp
 - Use T to correct [CO₂]
- Fast CO₂, H₂O & T diagnostic
 - Redundant EGR measures
- Probe modifications required
- July campaign scheduled
Technical Progress: Develop End-on-Flow EGR Probe Tip

EGR Probe Improvements Required

- EGR Probe designed for cross flow
- Backflow will be end-on flow
 - Probe access is down intake runner
- Modified tip designed
 - Gas cross-flows through probe ducts
- 3D 316SS Metal Printing
 - Enables complex geometry
 - Excellent weld-trial results
- Replaces standard EGR Probe tip
- *Led by SuperTruck Partnership*

Modified Probe Enables Backflow & External EGR Measurement
Responses to 2013 Review Comments

Numerous Positive Comments:

- “very unique and systematic approach”
- “good approach supporting work to achieve SuperTruck’s 55% BTE target”
- “making very good progress”
- “making these measurements in real engine situations is a major accomplishment”
- “very strong collaborative relationship with Cummins”
- “project is very well-defined and planned”
- “This project makes fuel-economy advances via engine-intake improvements a refined engineering possibility”
- “project work supports overall DOE objective on developing advanced fuel efficient engines”

Recommendation:

- “apparently not making this technology available to the other participants in the SuperTruck program”
- “would like to see this project technology be rolled out to other HD engine manufactures”
 - All of the CRADA-developed technologies are available to any organization
 - These include the EGR Probe, SpaciMS, Fuel-in-Oil
 - The CRADA has always shared the diagnostics while keeping certain applications protected
 - Each of these diagnostics has been applied outside the CRADA via funds-in projects
 - The ORNL team is very interested in working with any interested customer
 - This broad availability was specifically mentioned in the 2013AMR presentation
 - Moreover, we have presented EGR Probe applications to the Advanced Combustion and Emission Control (ACEC) Tech Team (1-10-2013), where we communicated the availability of this and other CRADA-developed diagnostics to participating OEMs
 - We will take additional measures to make this broad availability more clear
Collaborations & Coordination with Other Institutions

- **Cummins**
 - CRADA Partner, Sam Geckler (Co-PI)
- **Cummins SuperTruck Program** (ACE057, Friday 11-11:30am)
 - David Koeberlein (PI), Rick Booth
 - ORNL is subcontractor on Cummins’ VT SuperTruck project
 - *Multi-Color EGR Probe scheduled for SuperTruck July 2014*
 - Cooperative development of Multi-Color Multi-Species EGR Probe
 - End-on-flow tip
 - Harmonic analysis & stiffening of long EGR Probes
 - Coordination of common development interests
 - Use of CRADA-developed technologies
- **University of Central Florida**
 - Professor Subith S. Vasu & Students
 - Informal collaboration outside VT Program
 - Combined CO-CO₂ probe (*see Thurmond presentation*)
- **Publications, Presentations and Patents**
 - 2013 R&D100 Award: Fuel-in-Oil technology
 - 2 Patents: re. oil dilution & particulate sensing
 - 1 Invention Disclosure: re. Multi-Color EGR Probe
 - 6 oral presentations (3 invited)
Remaining Challenges & Barriers, and Proposed Future Work

Remaining Challenges:

- **EGR Probe hardware modifications**
 - Incorporating optics for H$_2$O spectroscopy
 - Avoiding resonance with engine harmonics

- **Instrument modifications for Multi-Color Multi-Species EGR Probe measurements**

- **Modify instrument for closed-loop control studies**

- **Applications for advancing engine efficiency**
 - EGR & charge uniformity, combustion uniformity
 - Tuning and validating design models
 - Two campaigns at Cummins Technical Center

- **Determining net cylinder charge from component measurements**

Future Work:

- **Modify probe to incorporate H$_2$O & T optics**

- **Stiffen Long EGR Probe to avoid vibration**
 - *In collaboration with SuperTruck team*

- **Modify instrument to incorporate H$_2$O & Temp.**
 - Hardware: laser, multiplex unit, detection
 - Software: control, data acquisition & analysis

- **CO$_2$ temperature-compensation methods**

- **Determine analysis speed & accuracy tradeoffs**
 - Real-time analysis for control assessment
 - Slower post-analysis for improved accuracy
 - Requirements & tradeoffs to be defined by team

- **Assess nature of cylinder-charge components**
 - Spatial, cyl-to-cyl. & cyc.-to-cyc. uniformity
 - Calibrate simple scavenging model in GTPower
 - Campaigns in July (SuperTruck) & Oct. (CRADA)

- **Apply campaign insights to initial development**

- **Further development**
 - Models linking backflow to cylinder-residual nature
 - Weight factors for backflow & intake charge
 - Temporal (crank angle) integration methods
Summary

• Relevance
 – CRADA work enables improved cylinder-to-cylinder & cycle-to-cycle combustion uniformity
 – This in turn enables DOE goals for improved fuel efficiency and durability

• Approach
 – Develop diagnostic to measure spatial & temporal uniformity of cylinder-charge components
 – Apply diagnostic to advance engine technology
 – Assess specific hardware architectures
 – Tune, validate & improve design simulation tools (models)
 – Assess closed-loop control strategies & associated efficiency gains

• Technical Accomplishments
 – Residual-backflow and external EGR measurements demonstrated
 – Advanced EGR Probe designed & specified for quantifying backflow & external EGR
 – End-on-flow EGR Probe tip designed (in collaboration with SuperTruck project)

• Collaborations
 – Application of EGR Probe to Cummins’ SuperTruck 55% BTE Goals
 – EGR Probe design & development work outside VT program with U. Central Florida
 – R&D100 Award, numerous presentations and two patents
 – EGR Probe available to users outside the CRADA

• Future Work
 – Modify EGR Probe for quantifying backflow and external-EGR charge components
 – Apply modified probe in CRADA & SuperTruck campaigns to characterize charge uniformity
 – Assess hardware, design models and advanced closed-loop control strategies
 – Develop methods for determining net charge nature from backflow & EGR measurements