OpenBAS—Software-Defined Solutions for Managing Energy Use in Small to Medium-Sized Commercial Buildings

DOE Award DE-EE0006351

July 4, 2014

David Culler, Tyler Hoyt, EECS, UC Berkeley
Mark Modera, Marco Pritoni, UC Davis
Alan Meier, Francis Rubinstein, Anna Liao, LBNL
Stephen Dawson-Haggerty, Building Robotics
Therese Peffer, Karl Brown, Carl Blumstein, CIEE
The problem....

Buildings consume over 40% of the total energy consumption in the U.S.

Over 90% of the buildings are either small- (<5,000 sf) or medium-sized (between 5,000 sf and 50,000 sf).

Very few of these buildings use Building Automation Systems to monitor and control their building systems from a central location.

Thus a significant amount of energy is wasted.

A proposed solution….

Inspired by the Internet, OpenBAS is an open software-architecture, open source Building Automation System for medium commercial buildings that uses a layered, horizontal approach to foster innovation among third party vendors.
OpenBAS:
Software-Defined Solutions for Managing Energy Use in Medium-Sized Commercial Buildings

Objective:
- Develop an open source open architecture Building Automation System (BAS) for commercial buildings < 50,000 sf.
- Develop three open source plug ‘n play devices (HVAC, lighting, general)
- Develop open source user interface with system set-up, status display and auto-mapping.

Team:
David Culler, Michael Andersen, Gabe Fierro, Jonathan Fuerst, Tyler Hoyt, EECS, UC Berkeley
Mark Modera, Marco Pritoni, UC Davis
Alan Meier, Francis Rubinstein, LBNL
Stephen Dawson-Haggerty, Building Robotics
Therese Peffer, Karl Brown, Carl Blumstein, CIEE
A runtime for the building

- **Hardware presentation layer**
 - sMAP (simple Monitoring and Actuation Profile)
 - Integrate heterogeneous monitoring, actuation, & communication substrates

- **Hardware abstraction layer**
 - Map between physical and virtual resources
 - Write applications in terms of relationship between hardware elements

- **Time series data service**
 - Archiving and querying

- **Application layer**
 - Portable, robust
Hardware Presentation Layer: sMAP
(Development began in 2009, now has 40+ drivers, active users group)

sMAP Resources

sMAP Gateway

Applications

Internet

Google PowerMeter

Database

Every Building

Cell phone

EBHTTP / IPv6 / 6LowPAN
Wireless Mesh Network

Vibration / Humidity

EBHTTP Translation

Proxy Server

Temperature/PAR/TSR

Light switch

Dent circuit meter

Modbus

sMAP Gateway

RS-485

sMAP Gateway

sMAP Gateway
sMAP

• Universal information representation for physical data
 – Self-describing, compact JSON schema, transportable over UDP/TCP
 – Integrated metadata
• Software Architecture for physical data processing and actuation
 – Real-time and archival data, time-series database
 – Adapters/Drivers for legacy and direct streams
 – Subscription, syndication, distillates
 – Query processing, visualization interface
• Resource-oriented web-service framework for embedded applications

http://code.google.com/p/smap-data
Hardware Abstraction Layer

```python
proc = BossProcess(timeout=15min, auth_token=ABC)
while True:
    for dmp in hal.find('#OUT_AIR_DMP > #AH'):
        for vav in hal.find('#VAV < $%s' % dmp.name):
            occ = model.estimate_occupancy(vav)
            vav.set_min_airflow((vav.min_fresh_air() /
                                dmp.get_percent_open()) * occ)
    time.sleep(15*60)
```

Write applications in terms of relationship between hardware elements
Goals and Challenges

• Portability of Applications
 – Write once, run anywhere for buildings
 – Current practice: hand-coded logic
• Fault tolerance
 – Partial failures of controllers
 – Network partitions
 – Current practice: really tough hardware
• Multiple processes
 – Concurrent applications and users
 – Current practice: none
• Federation
 – Multiple heterogeneous systems
 – Current practice: lots of stovepipes
• Scale
• Security & privacy
Security: BOSS Wide Area Verified Exchange (BOSSwave)

- Web of trust model
- Decentralized
- Push to (multiple) subscribers – not poll
- Revocation
- Verify
 - Origin, Authorization of Operation, Target
- Limit
 - Processing of unauthorized ops, bandwidth of fanout
- Tolerate
 - Intermittent connection
BOSS Software platform = backbone of OpenBAS

Applications

Building System Services

Hardware presentation layer

Hardware devices

User Interface
- Status display
- System set-up

Control applications
- (model building, optimization, fault detection/diagnostics, demand response)

TimeSeries Service
- Transaction Manager
- Execution Environment
- Hardware Abstraction Layer

Hardware drivers
- sMAP

6lowpan WiFi EtherNet ZigBEE
- Thermostat etc
- HVAC RoofTop Unit
- Lighting gateway
- LED fixture or fluorescent ballasts
- General control (bathroom fans, refrigerators, signage, security)

Security:
- BOSSWAVE (Wide Area Verified Exchange)
BOSS server
FITPC with openBAS platform including:
- sMAP sources (instances of drivers for particular devices)
- Discovery
- Repository:
 - TimeSeries Archiver/database
 - sMAP drivers
 - Config
 - Discovery registry

Proposed openBAS

Internet
Periodic updates to Repository

Roof Top HVAC Units

Overhead lighting

Building LAN

Ethernet to device (e.g., thermostat), BACnet if applicable

BOSS server
FITPC with openBAS platform including:
- sMAP sources (instances of drivers for particular devices)
- Discovery
- Repository:
 - TimeSeries Archiver/database
 - sMAP drivers
 - Config
 - Discovery registry
Questions?
Therese Peffer
therese.peffer@uc-ciee.org
510-289-4278