U.S. DEPARTMENT OF

©) ENERGY Advanced!Grid Modelings:

K\
| O °°
& &’)

Electricity Delivery R . D= N\
& Energy Reliability 20147 Peer Rewew B == e

>

An integrated scripting, execution and
collaboration environment for power
grid simulation and analysis

Mark Hereld and Michael Wilde
Argonne National Laboratory

June 18, 2014

Computational Environment

A web-based portal for science infrastructure
— Reliability, usability increasing; approaching readiness for PGrid group to evaluate
— Ability to add new applications to portal has been refined
Swift language and execution environment
— Ability to gather and aggregate an ad-hoc set of resources is being enhanced
— Extreme scaling enhanced via Swift/Turbine from ExM project (ASCR X-Stack)
— Ability to call external library functions well-suited for power grid simulation tools
Evaluation analysis
— PIPS-L in development and evaluation — showing promising scalability and usability
— Example visualization scripts developed for MATPower networks
— AMPL climate/transmission model parameter sweep example placed under Swift
— Running on Eureka viz cluster attached to BG/P (climate data analysis)
Annotation and provenance
— SQL-based provenance queries are approaching usability
— Name/value annotation/tagging is being integrated into provenance queries
— Paper on this work is underway
Use case: build a new application incrementally
— Defining requirements: local <-> distributed / parallel, publishing, compatible with standard tools
— Building example tools and interfaces

Swift: easier high-level programming with
extreme-scaling for many-task applications

Data server

-

Swift '
script™ SWITG»
J

Application
Programs

XSEDE

© CHICAGO

Clouds:
Amazon
EC2, XSEDE

\Submit host (login host, laptop, server)/

\ Wispy, ...)

Swift runs parallel scripts on a broad range
of parallel computing resources.

Under the ExM ASCR X-Stack project we
scaled Swift up to tackle many-task
applications from petascale to exascale.

Implicitly-parallel functional
dataflow programming for upper-
level application logic

Drivers: inverse problemes,
branch-and-bound, stochastic
programming, UQ, ensembles

Enablers: scalable parallel
evaluation, dynamic load
balancing, in-RAM datasets

Benefits: programmability, fault-
recovery;
possibly, power savings

Results: new scalable Swift

implementation, 25K tasks/sec,
128K-core parallel loop scaling;
datastore and MTC publications

3

Computational and data challenges

* Simulation is typically performed by complex, messy
scripts

Computational workflows are expressed as complex, unstructured, ad-hoc
scripts which manually perform parallel job execution

 Many difficult, distracting details to manage

Researchers manually move and process data over diverse and error-prone
compute clusters, networks and security environments.

e Collaboration and reuse is hindered

Scripts that explicitly deal with these issues are hard to review, validate,
disseminate, and reuse.
This makes results very hard to obtain — and even harder to replicate!

SimulationﬂEnvironment Architectgr\e

—

Grid .
Collaboration Catalogs
Researchers 6{ 8 }
Files & Metadata
0: Develop script — = Provenance
< > script |
libraries | ==
7 o
1: Run script(EL1.trj) — = 5 S
. —A—
2. Lookup file
: name=EL1.trj .
SWITT User=Mark 6: Update catalogs

4: Run arNk

type=TransLines

(Com pute
Facilities

R

5: Transfer results

<€

&

3: Transfer inputs

Storage
locations

External
collaborators

Simulation Environment Benefits

- Easier to find, write and %
run reusable, parallel - i Collaborate”

multiscale scripts 8 Qibevelop ®|“

1: Run script

Q)
4:Run aph\

> . 5: Results
- "! ,:‘“”! &
uiP um ml

<€

3: Inputs

Simulation Environment Benefits

Automates parallel and
distributed workflows

7C|Ib te ;;

Simulation Environment Benefits

7: Collaborate”” ,
] e
0: Develop i
D € > =
1: Run script o /
l’ 2. LooI}b A
6: Update

* Enables cataloging, i Ron e |
. . = 5: Results
sharing and discovery of —r
iy

R
results and methods ;m!—/ Ml: &

3: Inputs

<€

Goal: portal for collaboration and dissemination

* Basing work on GPSI: Generic Portal for Science Infrastructure

* Relevance to the Power Grid simulation collaboration
— Usability
* Hides the complexity of running on diverse, complex parallel resources

* Provides instant documentation on how to run specific tools

* Interfaces for finding, sharing, analyzing and organizing data, tools and
results

— Collaboration

* Provides a virtually centralized view of widely distributed resources:
datasets, application programs and tools,

— Dissemination

* Enables “software as a service” — a powerful way to package a diverse set
of applications for use and evaluation by a community

What can the Grid Portal do for researchers ?

Simplify access to compute resources

Organize analysis and simulation data

Capture project workflow for reuse

Simplify development of complex workflows

Tame repetitive work

10

Portal Design Goals

Smooth scaling

— from prototype codes, scripts, and experiments to large scale data and
computational applications

Familiar development tools
— promote rapid prototyping

Modularity, reuse, and sharing
— productivity

Enable broad community

— developers, users (lab AND industry), and decision-makers

11

Collaboration environment

- E PowerGrid N\
Web Interface L —
Smart Grid
Datasets T
% |7 ~— Analysts,
N Scientists

Data Catalog

Data transport,
storage |fl> _—] D

Industry
data
servers

management Metadata DB
& compute — =

Power Grid . s . Provenance
Application [Swift scripting engine]/ DB
& Script Library —

Cloud
Data
Servers

> B < e Y
LAB/ UChicago

ALCF LCRC Industry

—~—

—— Data and compute resources at labs, agencies, LCFs, grid industry

stakeholders / operators and commercial cloud resource providers
(Data servers managed and federated by Globus Transport, Catalog, and CoIIaborate)/
<_ /

N

Globus components] [Tools integrated by this project] [Lab and Industry resources]

12

Metadata and annotation management

We have explored 2 metadata databases: TagFiler from ISl and
ElasticSearch, an open source project

Developing a database structure that integrates metadata tags,
dataset location, and provenance tracking of derived results.
Example queries:

— Find all datasets matching:

* type=transmission.log and state=(MD or VA) and cdate between 1-Jan-2011
and 31-Dec-2012)

— Find all datasets matching:

* type=PIPS-L.output and version=2.1 and user=cpetra and state=MD and (cdate
between 1-Jul-2012 and 1-Aug-2012) and (efficiency > 0.92)

Queries can be used both interactively and from Swift scripts
Dervied datasets can be tagged as part of the executable workflow

Metadata tags can be applied to datasets, applications, scripts, and
runs.

LB B W 1 Google Docs - Home @ SmartGrid : Job

€ c

) Getting Started

| ST.GPSI Task List

emM:Ee X

9 Other Bookmarks

X https://smartgrid.mcs.anl.gov/ffiles/process /202

@ Proxyll # Kennicot @ ShareThis

E] CiteULike: My libra & CLS Web Content M @ SmartGrid : GPSI He

I'_‘{:‘;j T

@ Post to CiteULike

<] P

@ Bookmark on Delic

- 'IAé
Your Jobs All Jobs Create Job
Job 202
Download) Delete) (Create job\
licati p gridHOURS Descripti -
g?;d:::ﬁ';" Pf,‘;i'& GPS| ’/—\U:;:ilm frames 31 to 99, also sequester ampl data in
Status Completed — pseudo-repo
Start time 2011-10-05 19:57:07
End time 2011-10-05 20:13:33
Resource MCS_COMPUTE
Processors 1 Za
Queued jobs 0 Tags
Active jobs 0
Finished jobs 138
Parameters EndHour 29
StartHour 31
Input file(s) None
Output file(s)
Application Output Runtime GPsI
ball.tgz cf 0 pghours-20111005-1957-1tx9y05q.log index.html
ed.mod gencost0031.dat stderr_swift.txt coaster.log
Imp2png gencost0032.dat stdout swift.txt output.xml
pghours. swift gencost0033.dat sites.xml|
print_results.inc gencost0034.dat swift.log
runedipopt6d 4 gencost0035.dat 4 tc.data
set data ascii.inc ¥ gencost0036.dat M
Output
Imp0031.png Imp0063.png
=2 4
) @
b ©
= =
® T
- e
° °
_ﬂ’-. FEN e
-92 91 -90 -89 -88 92 91 -90 -89 -88 :
° Longitude W ° Longitude W .

S

Data Browsing

@ SmanGrid : Job

@ Proxytt @ Postto CiteuLike [E] CiteuLike: My libra # CLSweb Content M. @ SmanGrid : GpsI Ho |8 Kennicort @ ShareThis @ Import to Mendeley @ Lasso @ EntityCube - Mark - i RealityDeck - Imm

e
N

HOURS Dascroton. wm frames 31 to 99, also sequ
PUBKEY QS pseudo-repo
Competed

2011-10-05 19:57:07
2011-10-05 20:13:33
MCS_COMPUTE

)

o0 -
Lorspluce W
Imp0052 pog Imp0053 pg

a e

50 -3
* Lorptude W
¥mp0035 prg

link

P ¥ T e ¥ TR
(_Preview)(Download) (Edit

D ata B FTOWS | N g CoDE | helloWorld.switt

St Owner hereld
. . Created 2011-10-13 13:34:42
Application: powe Size 154 bytes
i i e e G Produced by job None
Edit) (Delete) (Create Job) A
N N
SYo r Applications) Used by jobs) None
how | RO & entries P ¢
compute prices over a grid for each hot Application helloWorld
D Application Des (Tags
Files
70 sc10APPLICATION) s file;
killSwiftWorkers o] ball.tgz ' .
% Lol] pass « ed.mod app (file result) foo (string args)
* Imp2png
68 helloWorld my f
* pghours. swift ls "-1t" args stdout=@result;
= » print results.inc }
* runedipopt64
» set data ascii.i 630 . 4 5 &
o shift horizo rg‘?gltnmmo'g;fi file out <"dirlisting.txt">;
= out = foo("..");
gwne;d %\D 06 22:08:50
eat ~10-06 22:06:
Job Parameters Sne 843ty
our Jobs i
10 %] entries o StartHour (default:) singgd -
— GENERAL OUTPUT
ID Application Owner 2
324 helloWorld hereld FeE e e e e e e e
Job 202
((Download) ([Delete) (Create Job) MOTE: You are using Ipopt by default with the MUMPS linear solver, I MAG ES
Other linear solvers might be mors efficient (see Ipopt doct
323 helloWorld hereld ation powergridHOURS
R gg:xlircgps‘ ‘a I t i 3.10 i ith 14 1
Gomplees s Ipopt veraion 1.1, running vith lincar solver mumps. ——
@ 2011-10-05 20:13:33 dor of nonzeros in squality constraint Jact stderr swift.txt
Arce MCS_COMPUTE dnber of nonzeros in inequality constraint Ji stdout swift.txt
Geessors 1 Rumber of nonzeros in Lagrangian Hessian..... I
= Lo s fcu\gmu{zms g fMotal number of fabl, fo.data
Foniars oo e e Oupa PLOTS
Pa EndH 9 iabls with 1 d 1
ey Edes 3 T Imp.mp4
Input file(s) None Total numbor of equality cORBErAintS.........
’ Total number of inequality constraints.......
inequality constraints with only lower -20
Application Output inequality constraints with lower and uppe:
i inequality constraints with only upper
our Files e a 30
ed.mod gencost0031.dat
|mp2png gencost00G2.dat
- pghours.swift U gencast0033.dat -40
how [10 1% entries mnnn;digmu‘:si' . g::mrm@s-da:
set data_asciiinc | gencost0036.dat = 50
1D Filename) @
'g 40 60
46256 ill666.mp4 =
-
s 39 -70
46255 chi666.mp4
-80
46250 foo.png
-90
7356 Imp.mp4
-100

16

Swift programming model:
implicitly parallel functional dataflow

(int r) myproc (int 1, iInt j)

{
int ¥ = F(1);
int g = GQ);
r = f + g;

¥

« F() and G() implemented in native code
« F() and GQrunin concurrently in different processes
* I is computed when they are both done

* This parallelism is automatic
* Works recursively throughout the program’s call graph

Swift/T Goal: programmability for extreme scale

* Focus is “many-task” computing: higher-level applications composed of
many run-to-completion tasks (input-process-output vs. message passing)

* Whyis it relevant to DOE extreme-scale computing?

— Programmability

* Increasing number of applications have this natural structure: material by design, inverse
problems, stochastic programming, branch-and-bound problems, UQ.

* Coupling extreme-scale applications to preprocessing, analysis, and visualization
— Resilience

* The functional programming model provides a modular hierarchy for re-execution of
failing units of an application

— Power management

* Graph structure of application upper levels may enable functional units to be quiesced
and data transfer “distance” to be reduced

* Challenges
— Data locality and load balancing!

18

Centralized evaluation can be a bottleneck

Have this: Want this:

aval

m
1- SO0 lask'sec 1 wl =

Ceniralized avakiahon 1 SON DRI 1asksisat !
Disirbuted svalualion

19

Solved by fully parallel evaluation of complex scripts

'~
~
~
-
-~
~
-~
~
~
~
~
-
~

1t Q
int X = 100, Y = 100; =

:i.nt ALII]; \D—q;g Ja gé (6 @)@ @4'

int BI[];
foreach x in [0:X-1] { A

foreach y in [0:Y-1] { {«qe0 4D SN
if (check(x, y)) { Sl 30 é b @@@ D% .

Alx] [yl = g(f(x), £(y)):;

~
~
~~~~~~
- ~_

} else { el
A [x] [Y] = 0; I '
loqofte
} B o4}
} 1
B[x] = sum(A[x]);
}
!
O Task
ﬁ_P I:l Data
= lask
_____ Spawn
— Data
(To simplify diagram, array references wait/write

are not shown for the loops above)



PIPS-L Swift/T Application test

o Swift/T was used in the PIPS-L C++ framework for the scalable
solution of stochastic integer problems

* The second phase of PIPS-L was coded in Swift/T to perform
the computationally intensive search for feasible and near-
optimal decisions in the stochastic unit commitment problem
with wind power integration (work by Cosmin Petra and Justin
Wozniak)

— From Cosmin: “One major advantage of Swift is that its high-level
programming language considerably shorten coding times, hence it
allows more efforts to be dedicated to algorithmic developments.
Remarkably, using a scripting language has virtually no impact on the
solution times and scaling efficiency, as recent Swift/PIPS-L runs
shows."



PIPS-L Swift/T Application structure

* Swift/T is used with PIPS-L, the solver for stochastic integer problems
(such as stochastic unit commitment)

* Phase 1: PIPS-L solves a so-called relaxation problem of the stochastic
integer problem.

— The solution found in this phase is sub-optimal: solution does not give the
lowest operating cost of the generators
— Possibly non-integer: may have a fractional value like 0.46 for a on/off (1/0)
decision: a non-implementable policy
* Phase 2: round the solution (with different cutoffs) to obtain candidate
integer solutions. Ensure candidates are feasible for each scenario.

— rounding-simple.swift checks the feasibility of a rounded solution, for a given
cutoff. It loops over the scenarios (and to do: over the cutoffs).

* Phase 3: a branch-and-bound search may be needed for some problems
(feasible integers solutions may still be sub-optimal). This is not yet
implemented, but hopefully can be done in Swift.

— have prototyped branch-and-bound algorithms in Swift (PPoPP submission).



PIPS-L Swift/T structure

Prior work Swift problem

mapslsi\fel poter!tlal SC?nar_lo > analysis
Yy solution evaluation
parallel
numerics massive
f task

scenarios parallelism
\E results

* The Swift phase has a scale of 400K tasks x 75sec/task
* Goal: <5min on full-scale Intrepid BG/P (163K cores)



PIPS-L Swift/T Performance

4 tasks/CPU

~ 75 secs/task

Linear scaling measured up to 4K

tasks, 1K cores

Tail dropoff removed from scaling
tests (becomes insignificant as scale

increases)

distribution

°© o o &
N un ~J o
w o (9} o

e
o
o

Scaling

20

30

40 50 60 70
time (seconds)

80

90 100

Distribution of task durations

1,000

750
00
250

0

load

/ |

1'/

0 250

500 750
Processor cores

1,000

Ideal

® Measured

Scaling to 4K tasks, 1K cores (4 tasks/core)

1251
1004
754
501
254

0! _ - : : - - :
0 50 100 150 200 250 300 350
time (seconds)

Load balancing on 128 CPUS

24



PIPS-L in Swift: next steps

The number of datasets is realistic from the application perspective.
Increasing it over ~4K datasets is unnecessary.

Need to enhance the Swift code to complete the algorithmic side,
in particular two nested parallel loops, which will generate a greater
amount of parallelism.

The large runs with the new script needs a better candidate
solution, for which we need to run the PIPS-L stage-1 code on BG/P
(need to generate data for the full model and for large number of
scenarios and run PIPS-L on BG/P to obtain the candidate solution)

Need to add some more realistic algorithmic features. With larger
subproblems we can show similar scaling up to a larger number of
cores.

Need warm-start for the large scale runs (crucial if we want to solve
the problem in realtime).

In larger problems we willl loop over the cutoffs (now being tested)



PIPS-L Swift Code (initial version)

1 main () {

2 string data = "/path/to/data";

3 int nScenarios = 4096;

4 Dblob s = B readConvSolution C (dataPath, solutionPath) ;
5 float cutoff = 0.8;

6 Dblob r = B roundSolution C (s,cutoff);

7 float vI[];

8 foreach 1 in [0 : nScenarios-1] {

9 v[i] = B evaluateRecourselLP C (data,nScenarios,i,r);
10}

11 float result = sum(v) ;

12  printf ("result: %$f\n", result);

26



PIPS-L Swift code with cutoffs

15 (float result[]) cutoffs(float step)

16

17 for (int 1 = 0; 1 < 10; 1 =1 + 1)

18 {

19 result[i] = step*itof(i);

20 }

21}

22

23 main

24 |

25 string data = "/home/wozniak/PIPS-data-2/";

26 string dataPath = data + "4h dump/uc_4h";

27 string solutionPath = data + "primalsol conv8";
28 int nScenarios = toint (argv("N")) ;

29 blob s = readConvSolution (dataPath, solutionPath) ;
30

31 foreach cutoff in cutoffs(0.1)

32 {

33 blob r = roundSolution(s,cutoff) ;

34

35 float vI[];

36 foreach i in [0 : nScenarios-1]

37 {

38 v[1i] = evaluateRecourselP (dataPath,nScenarios,i,r) ;
39 }

40 float result = sum float(v);

41 }

42 )



PIPS-L Swift/T branch-and-bound structure

Initial
Problem

 Relaxation
y Solver

T—" Branch/Prune { Solutions \

Branches <

Creates task
parallelism
in Swift

Minimize some function via recursive search,
allow only for integer solutions

28



Swift Branch-and-bound code

1 double search (Problem p,

2 double upperBound)

3 {

4 double maximum = O0;

5 Solution s = optimize (p) ;

6 1if (s.feasible) {

7 if (s.solution == Integer) {

8 if (s.objective < upperBound)
9 // bound

10 upperBound = s.objective;
11 }

12 }

13 else {

14 // branch

15 search(s.left, upperBound) ;
16 search(s.right, upperBound) ;
17 }

18 }

19 }

29



Future Plans

» Swift application codes

— Complete the PIPS-L phase-2 stage in Swift/T; scale up, measure
scaling performance.

— Develop Minotaur branch and bound code for doing in parallel with a
Swift main loop.

— ldentify and port additional tool frameworks to Swift

e GPSI portal for dissemination and collaboration of codes and
frameworks
— Continued usability improvement
— Cataloging of multiple tools and workflows
— Evaluation and use by team members and program management
— ldeally, engagement with, and feedback from industry

30



Summary

* Swift parallel language enables integration of simulation
frameworks with implicit parallelization and portability
between parallel platforms

— Reduces development work compared to MPI and other
explicitly parallel programming models

— Handles fault tolerance, load balancing, scheduling
* Grid research portal enables collaboration through
dissemination and evaluation of codes and frameworks
— Discover and share application programs, frameworks, scripts

— Catalog and annotate raw and derived data, metadata,
provenance



