

SDG&E's Energy Storage Implementation

DOE – Energy Advisory Committee

Thomas Bialek PhD, PE Chief Engineer

June 17, 2014

Existing Substation Energy Storage Projects

2 units (1 MW / 3 MWh) installed and in production

Location	Size (kW/kWh)	Mfg/Integrator	Status	Purpose
Borrego Springs Microgrid	500/1500	Saft/Parker Hannifin	Production	Peak Shaving, Time Shifting, VAr Dispatch, Island Support, PV Smoothing
Pala Substation	500/1500	Greensmith	Production	Time Shifting, VAr Dispatch, PV Smoothing

Existing Community Energy Storage Projects

12 units (260 kW / 391 kWh) installed with 7 in production

Location	Qty	Size (kW/kWh)	Mfg/Integrator	Status	Purpose
STC, Clairemont, Poway	3	25/72	Saft/ Powerhub	Installed, technical evaluation	PV Smoothing, Peak Shaving, VAr Dispatch
Borrego Springs	3	25/50	Greensmith	Production	PV Smoothing, Peak Shaving, VAr Dispatch, Islanding
Century Park	1	50/82	Greensmith	Production	PV Smoothing, support for EV chargers
San Diego Zoo	1	100/100	PPS/Kokam	Production	PV smoothing, VAr support, schedule charge/discharge
UCSD MESOM	1	6/11	Sunverge/ Kokam	Production	Support for EV chargers, mitigate demand charges, synchronize energy storage with PV array
SDSU Suites	1	18/32	Sunverge/ Kokam	Production	Support for EV chargers, mitigate demand charges, synchronize energy storage with PV array
Santa Ysabel Microgrid	2	30/34 and 6/10	Saft and Sunverge	Production	Power smoothing for wind generation in support of islanding critical assets

Planned SES Projects

- 5 units (5 MW / 14 MWh) contracted Q4 2012, to be installed by Q2 2014
- Worked with Distribution Planning to identify locations SES would provide an alternative to traditional solutions

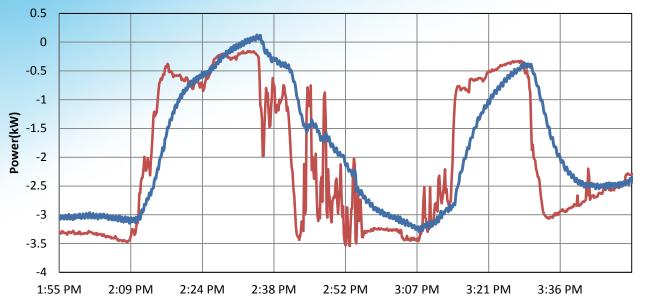
Location	Size (MW/MWh)	Mfg/Integrator	Status	Purpose	
Borrego Springs Unit 2	1/3	Saft	Site testing Operational	Peak Shaving, Time Shifting, VAr Dispatch, Island Support, PV Smoothing	
C1243 (Ortega Hwy)	1/3	Greensmith	Installing	Peak Shave, Time Shifting, VAr Dispatch, Islanding	
C75 Mt San Miguel	1/3	Greensmith	Installing	Reliability, Islanding, Power Quality	
Julian	1/2	S&C	Installing	Reliability, Islanding, Power Quality	
North City West – Canyon Crest Academy	1/3	Saft	Installing	PV Smoothing, Power Quality, Islanding	

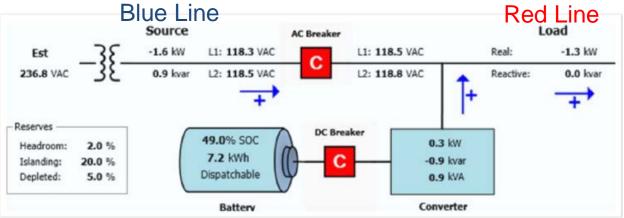
Community Energy Storage (CES)

- Three Units
- 30 kW, 72 kWh Each
- Saft Lithium Ion Batteries
- Powerhub Inverter and Cabinet
- 120/240 V Single Phase
- Current Uses
 - Ad-hoc testing (Skills)
 - Daily peak shaving (Clairemont)
 - Temporarily offline for repair, previously used for PV smoothing (Poway)

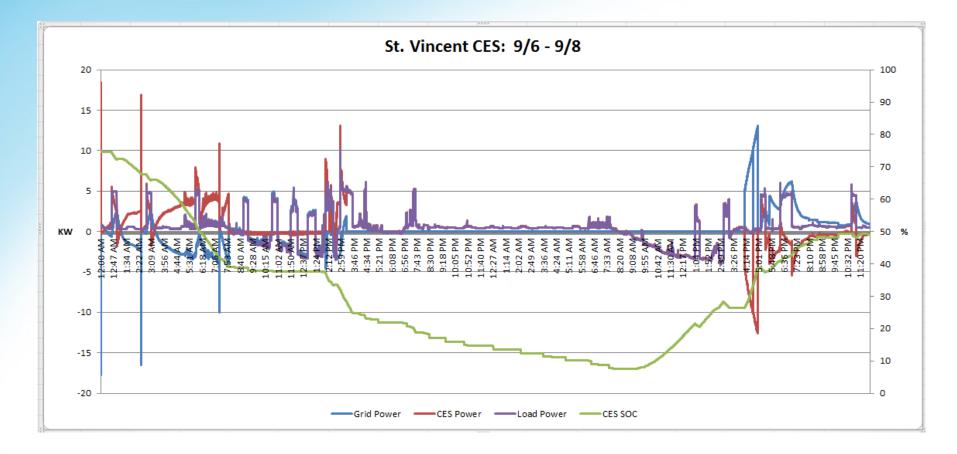
Borrego Community Energy Storage (CES)

- Three Units
- 25 kW, 50 kWh Each
- 120/240 V Single Phase interconnection
- Kokam Lithium Ion batteries
- S&C Inverter and Cabinet
- Currently Online and available for:
 - Islanding
 - Constant Output
 - Peak Shaving
 - Arbitrage
 - PV Smoothing
 - VAr Dispatch




CES PV Smoothing Operation

- Units capable of smoothing intermittency caused by fluctuating power output
- Operational variables can be user-defined i.e. Ramp rate control, time constant



• No outage seen at St. Vincent CES unit site

Procurement Issues

- Limited market availability, long lead times, extended supply chains
- "Turnkey" contracts do not cover all work/costs required for commissioning
 - E.g. land, environmental, site preparation, electrical interconnection / upgrades, software integration
- Vendor financial strength inconsistent
- Some vendors exaggerate their capabilities
 - Systems not ready to be commercially deployed (e.g. Flow battery used to model / forecast GRC storage projects, but not actually available on a commercial basis)
 - Inability to perform full Factory acceptance test (e.g. full power test, PV smoothing test)
- Some vendors are unable to offer full "turnkey" projects
- Some vendors refuse to provide hard quotes (they offer budgetary estimates, subject to extras)
- Most vendors do not offer extended warranties those that do, are they going to be around? Is capacity degradation covered (usually not)?
- Usable capacity of battery systems is 10-20% less than nameplate capacity (cells cannot be discharged to 0%)

Design / Engineering Issues

- No validated models to size capacity & duration of units
 - What do you need, and where, for what application[s]?
- Large, heavy units require significant space and civil/structural engineering (concrete pads, retaining walls, etc.)
- Lack of utility construction standards
 - SDG&E is developing these for our service territory e.g. requiring a SCADA switch in front of each large battery system
- Cooling requirements can be significant if the units are in operating areas with high ambient temperatures (15kW to 30kW common for 500 kW system).
 - Passive vs. active cooling: passive requires additional space, active requires additional equipment and associated maintenance, and electrical demand
- Noise considerations if units are installed in populated areas. Inverters operating at high kW levels can produce a loud, high-frequency sound.
- Safety, environmental and permitting issues

Construction / Installation Issues

Physical

- Battery yards require walls or fences, possibly sound barriers
- Battery yards need to be large to accommodate (equipment, working space, ingress/egress, cranes), similar in many respects to a substation
- Battery containers require large concrete pads or piers; seismic requirements must be met
- Environmental restrictions e.g. species protection, materials used in equipment, storm water runoff
- Large footprint for minimal MW, MWh easement and other right-of-way issues
- Electrical
 - Large batteries require SCADA switches for quick isolation (increases cost, complexity)
 - Some battery systems require non-standard transformers
 - Some installations require non-standard cables that are flexible enough to be trained inside the inverter cabinets (e.g. those used on hybrid locomotives that support a very tight bend radius)
- IT
- Communication requirements, availability, reliability
- Hardened, reliable secure environments are required

- Lack of integration between network management systems (OMS/DMS, IT network systems) and battery controls / element management systems
 - New functions and interfaces
- Cloud based web-portal or other custom control systems for each vendor
- Immaturity of integrated solutions
- Communications between systems sporadic
 - E.g. local communications between devices (battery/PCS), and backhaul to utility
- Vendor support some vendors more responsive than others
 - Spare parts, repairs, software fixes
- Scaling of solution is non-trivial not as simple as just adding more modules
- Failure modes are different for each solution / vendor
- Fire protection / suppression requirements for lithium-based chemistries are significant

Net Load and Flexible Capacity Needs – SDG&E

3,000 900 **Power 1 Second Data** Net Load 800 700 600 500 2,500 400 kW 300 200 100 **Net Load (MW)** 1,500 -100 4/28/2013 -200 4/27/2014 -4/26/2015 -4/3/2016 4/16/2017 1500 MW 4/29/2018 -4/28/2019 in -4/26/2020 1,000 2.5 Hours 500 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 4 5 8 9 1 2 з 6 7 Hour Ending Pacific Standard Time (PST)

System Low Days

Thank You

Thomas Bialek

Chief Engineer

TBialek@semprautilities.com

www.sdge.com/smartgrid/