ASSESSING 116 DEEP RETROFITS ACROSS THE U.S.

By: Brennan Less & Iain Walker, LBNL, Residential Building Systems
ACI National Home Performance Conference, Detroit, MI, 04/30/2014
Defining a Deep Energy Retrofit—
Variable and Flexible

- Comprehensive upgrades to the building enclosure, heating, cooling and hot water equipment.
- Often incorporates appliance and lighting upgrades, plug load reductions, renewable energy and occupant conservation.

With Pre-Retrofit Energy Data

- **% Reduction**: >50%
- **Absolute Reduction**: Reduction > Average consumption in the region

Without Pre-Retrofit Energy Data

- **Consumption Target**
 - Affordable Comfort Thousand Home Challenge Option B
 - Half the regional average consumption
 - Zero Net-Energy

- **Performance Target**
 - <50 HERS (2006) Index
 - Passive House or EnerPHit
 - 2012 IECC
Past and Present DER R&D Efforts

- Major Energy Retrofit methods were documented in North American cold climates in the 80’s
- ACT²—demonstrated actual saving >50% in small sample of existing California homes in the 90’s
- Simulation efforts have suggested that DERs are feasible and possibly economically justified in existing homes
 - Canada (Henderson & Mattock, 2007)
 - Europe (Becchio et al., 2012)
 - U.S. (Fairey & Parker, 2012; Polly et al., 2011)
- Numerous deep retrofit efforts have been documented in actual homes in the EU
 - IEA Task 37 – 76% tech systems savings in 60 DERs
 - UK SuperHomes - >170 DERs with >60% CO₂ reductions
 - UK Retrofit for the Future - >100 DERs targeting 80% CO₂ reductions
 - EnerPHit – Passive House certification criteria for refurbished buildings
LBNL Review of U.S. DERs

- Reviewed the available literature, collected DER data for meta-analysis
 - Likely to be more DERs that are undocumented
 - Included owner-occupied, affordable housing, community redevelopment (foreclosures), research homes, and green remodels

- Data sources
 - U.S. DOE Building America reports
 - U.S. DOE National Lab reports
 - ACI Thousand Home Challenge
 - Utility retrofit programs
 - USGBC/ASID REGREEN
 - Magazine articles (JLC, Home Energy)
 - Presentations
 - Architects/Builders
What Counted As “Deep”?

- Projects self-identified as DERs
 - Project scopes were aggressive and comprehensive (i.e., targeting all or nearly all building assemblies, services and end-uses)
 - Projects also had to provide at least one of the following—airtightness, energy use or cost data

- Variable performance targets:
 - HERS <70
 - 30-70% energy reductions
 - Meeting Passive House standards
 - Various green certifications and Energy Star

- There was substantial variability in cost data reporting, and we used a mix of whatever was reported in primary sources (Least Reliable)

- Data includes BOTH simulated and actual results
Summary of Reductions Achieved by U.S. DERs

ACH: 16 ➝ 5 ACH$_{50}$

HERS: 151 ➝ 68

Energy: 127 ➝ 48 MMBtu

Costs: $2,738 ➝ $1,588
Post-Retrofit Airtightness in U.S. DERs—Comparison to Programs and Codes

- ~70% installed mech. venting
- <50% in non-Cold climates
- ~70% were ERV/HRV
Does Airtightness Predict Energy Savings?

- In comprehensive upgrade projects, you cannot use one element to predict performance of the whole!
- Variability in climate, house size, insulation, HVAC, pre-retrofit usage, and behavior all “interfere”
Does Airtightness Predict Energy Savings?
What’s Happening Here?

- DERs can be successful across a range of airtightness levels
 - But MORE airtight = MORE savings for any given home

- Air sealing is still generally essential, cost-effective, and smart in nearly all DER projects

- **We recommend** targeting new construction levels
 - Gut rehabs: <3 ACH$_{50}$
 - Others: <5 ACH$_{50}$
 - IECC 2012
 - Or 60-70% leakage reductions
Impacts of Changing Fuel and Increasing Misc Electricity in DERs

- 7 DERs in this review increased electricity use as a result of retrofit. Why?
 - Natural gas → Electric
 - Addition of energy using home features
 - Lighting, mechanical ventilation, dehumidification, cooling, A/V.

- Results for these 7 DERs:
 - Net-site = 52%
 - Net-source = 34%

How frequent is fuel-switching in DERs?
When is it problematic and when is it OK?
What drives fuel-switching?
How Much Do DERs Cost?

- **Reported average project costs:**
 - $40,420 ± $30,358 (n=59)
 - $22.11±$17.70 per ft² (n=57)

<table>
<thead>
<tr>
<th>Project</th>
<th>Cost Range</th>
<th>Cost per ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>DER</td>
<td>$20,000 - $120,000</td>
<td>$22.11±$17.70 per ft²</td>
</tr>
<tr>
<td>Avg. Mid-Range Remodeling Project (2012-13)</td>
<td>$40,420 ± $30,358</td>
<td></td>
</tr>
<tr>
<td>Most Expensive 2009 Remodeling Projects (~550k homes)</td>
<td>~$500,000</td>
<td></td>
</tr>
</tbody>
</table>

(Images of a bar graph and a dollar stack are included.)
How to Assess Cost-Effectiveness

Increased Loan Costs

Energy Bill Savings
Financed Costs of DERs

- Pre-conditions very poor and entirely un-insulated
- Vast majority of energy use is heating with expensive diesel fuel
- Energy bill reductions larger than avg.

- Very aggressive, super-insulated projects.
- Low pre-retrofit energy costs
- Pre-conditions include some insulation or 2x pane windows
- Big PV array
- Cold climates or newer home
- Increased electricity use
- Addressed only/primarily heating
DER “Value” in a Wider Context

Most homeowners value these over energy-cost benefits (Boudreaux et al., 2012; Neuhauser, 2012)

These are what get owners to engage in energy retrofit process (Fuller et al., 2010)
DER Summary

Energy Performance
- 47% Avg. Reduction
- 16% > 70%
- Reductions ≈ Avg. U.S. Home Usage

Asset Performance
- HERS 68 (predominantly Hot-humid)
- Airtightness better than Energy Star in ~50% of DERs
- 63% avg. reduction
- Mechanical ventilation not always provided

Cost
- Savings: ~$1,300/yr.
- Costs: ~$40k
- Financed DERs can be cost-neutral
- Massive value potential in NEBs
DER Guidance

- **Comprehensively** address **all** building systems and end-uses, and plan with **occupant involvement** where feasible

- Use **simple designs and off-the-shelf** equipment, beware highly-engineered, custom systems
 - Lower costs, lower maintenance, more serviceable

- Select **lower-cost options** wherever equivalent/adequate performance is possible
 - GSHP vs. mini-split
 - Spray polyurethane foam vs. dense-pack cellulose
 - Efficient gas heater and dhw vs. solar combi-system boiler

- Use **skilled contractors/subs** whenever available (often impossible)
 - Problems with inexperienced contractors, subs and suppliers repeatedly identified as major barrier in our review

- Target **existing remodeling projects and equipment replacement** with incremental DER measures
In airtightened homes, provide adequate ventilation using ASHRAE 62.2-2013

Consider site, source and carbon assessments
- Societal Impacts use source energy and carbon emissions
- Occupants use site energy and energy bill costs
- Most important when changing fuel mix and/or adding end-uses

Decisions in owner-occupied DERs are rarely just energy/cost based
- Focus marketing and sales efforts on non-energy benefits like comfort, safety, durability, aesthetics, noise, etc.

Consider staged retrofit approaches
- Integrated with maintenance and equipment replacement
- Less disruptive than whole house remodel
Thanks!

- Brennan Less
 - bdless@lbl.gov, 510-486-6895

- Iain Walker
 - iswalker@lbl.gov

- Research Report:

- http://homes.lbl.gov/
Citations

Citations Continued

