

Practical Considerations for Feature, Event, and Process (FEP) Analysis

Geoff Freeze, Sandia National Laboratories

Performance and Risk Assessment Community of Practice (P&RA CoP) Webinar

Outline

FEP Analysis Overview

- FEP analysis supplements scenario development, PA modeling, and the safety case
- FEP analysis for Deep Geologic Disposal of Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW)
- FEP Analysis for Near Surface Disposal of Low-Level Waste (LLW) and Intermediate Level Waste (ILW)

FEP Analysis Approaches

- Traditional Bottom-Up
- Top-Down, Bottom-Up for LLW/ILW Disposal

What is a FEP?

Feature

 An object, structure, or condition that has a potential to affect repository system performance (NRC 2003, Section 3)

Event

 A natural or human-caused *phenomenon* that has a potential to affect repository system performance and that occurs <u>during an interval that is</u> <u>short</u> compared to the period of performance (NRC 2003, Section 3)

Process

 A natural or human-caused *phenomenon* that has a potential to affect repository system performance and that occurs <u>during all or a significant</u> <u>part of the period of performance (NRC 2003, Section 3)</u>

■ A "FEP" generally encompasses a single phenomenon

- A repository is comprised of engineered and natural features
- A FEP typically is a *process* or *event* acting upon or within a *feature*
- FEPs can be defined at various levels of detail

What is FEP Analysis?

- FEP analysis is part of a broader performance assessment (PA) methodology that supports:
 - Scenario Development
 - Implementation in a PA Model
 - Safety Case and Safety Functions
- FEP analysis includes the following steps:
 - FEP (Phenomena) Identification
 - FEP (Phenomena) Screening

Performance Assessment Methodology

FEP Analysis for SNF/HLW Disposal

- Long history of FEP analysis, starting in the early to mid-1980s
 - Backup slides provide references
- FEP analysis is promoted by international organizations for deep geologic disposal of SNF/HLW
 - International Atomic Energy Agency (IAEA) (IAEA 1983; 2011)
 - Nuclear Energy Agency (NEA) (NEA 1992; 2012)
- FEP analysis is used in all advanced repository programs for deep geologic SNF/HLW repositories
 - U.S.
 - Waste Isolation Pilot Plant (WIPP) (DOE 1996; 2009)
 - Yucca Mountain Project (YMP) (BSC 2005; SNL 2008; Freeze and Swift 2010)
 - DOE-NE Used Fuel Disposition Campaign (UFD) (Freeze et al. 2010; 2011)
 - NEA International FEP Database (NEA 1999; 2006)
 - Sweden, Switzerland, Belgium, U.K., Canada, US (WIPP)
 - Other Countries
 - Germany, Japan, Finland, France, South Korea, Spain, Netherlands

FEP Analysis for LLW Disposal

- FEP analysis has been undertaken for near surface and borehole disposal of LLW (and ILW)
 - General Lists, originating from NEA International FEP Database for SNF/HLW
 - IAEA Improvement of Safety Assessment Methodologies (ISAM) for Near Surface Disposal Facilities FEP List (IAEA 2004)
 - DOE-NE UFD LLW (Jones 2011)
 - Project-Specific Lists
 - U.S.: Greater Confinement Disposal (GCD) Facility (Guzowski and Newman 1993)
 - U.S.: Clive UT LLW Disposal Facility (Tauxe 2012)
 - U.K.: Drigg LLW Repository (Phifer 2011; www.llwrsite.com)
 - Canada: Ontario Power Generation (OPG) Deep Geologic Repository (DGR) for LLW/ILW (Garisto et al. 2009; www.nwmo.ca/dgr)

FEP Analysis for LLW Disposal

381 DOE UFD LLW FEPs (Jones 2011)

- Shallow (< 100 m depth) disposal concepts
 - Near Surface Facility
 - Intermediate Depth Borehole
- FEP sources (1194 total FEPs)
 - UFD SNF/HLW FEPs (Freeze et al. 2011)
 - IAEA ISAM Co-ordinated Research Project (IAEA 2004)
 - Greater Confinement Disposal Facility (Guzowski et al. 1993)
 - Ontario Power Generation (OPG) Deep Repository for LLW/ILW (Garisto et al. 2009)
 - SNF/HLW Deep Borehole Disposal (Brady et al. 2009)
 - Drigg Low Level Waste Repository (Phifer 2011)
- Differences from SNF/HLW FEPs are:
 - more LLW FEPs related to proximity to surface
 - surficial events and processes (e.g., subsidence, erosion, surficial transport)
 - human intrusion
 - more LLW FEPs related to additional EBS features
 - engineered covers, disposal units (e.g., concrete vaults)
 - underlying layers (e.g., drains, geomembranes, etc.)

Scenario Development

 The included FEPs define the range of possible future states (i.e., scenarios) of the system

FEP Screening

 The specification of a subset of <u>important</u> FEPs that individually, or in combination with other FEPs, contribute to long-term performance

FEP Identification

 Development and classification of a list of FEPs that that capture the entire range of phenomena <u>potentially relevant</u> to the long-term performance of the repository system

FEP Analysis – Traditional Bottom-Up Approach Pros and Cons

Results in a large number of FEPs

- NEA FEP Database (NEA 2006) is the basis for most FEP lists
 - NEA FEP list contains ~2000 FEPs from 10 international programs in 6 countries
 - DOE UFD LLW FEP list contains 381 FEPs

Difficult to uniquely categorize and screen

- Considerable redundancy and overlap in the large number of NEA FEPs
- Screening of overlapping FEPs leads to situations where individual FEPs are partially included and partially excluded
 - Application of quantitative screening criteria not always possible

Time consuming and costly

- Acceptable for a large national repository program
- Cost prohibitive for smaller LLW sites

Helps to demonstrate comprehensiveness of the FEP list

Although comprehensiveness can never be "proven"

FEP Analysis – Top-Down Reality

PA Model Implementation

Apply "favored" code to simulate "inherent" scenarios and FEPs

Scenario Development and FEP Screening

- Included scenarios and FEPs are phenomena that are represented by the conceptual/numerical models in the selected code
 - e.g., waste degradation/source term, flow and transport
- FEP screening and exclusion is not systematic or comprehensive
 - Guided by expert judgment and experience rather than a formalized process

FEP Identification

- Provides a bottom-up audit of included FEPs and scenarios
 - Supports demonstration of comprehensiveness of FEP list
 - Confirms adequacy of capabilities in "favored" code
 - Identifies new FEPs to be implemented through alternate code, code modification, and/or parameter adjustment

FEP Analysis – Top-Down, Bottom-Up Approach Pros and Cons

Top-down development of phenomena models, scenarios and FEPs

- Provides efficient organization/mapping of phenomena
- Level of effort can be commensurate with project scope and budget
 - Level of detail (fewer broad scenarios/FEPs vs. many detailed scenarios/FEPs)
 - Rigor level must meet expectation of regulators

Bottom-up FEP identification

- Provides a check on comprehensiveness of scenarios/FEPs
 - Use an existing FEP list as an audit
- Supports systematic documentation of FEP screening

■ Top-Down from General NEA SNF/HLW FEP Database Categories

Features must be adapted for LLW

Top-Down from FEP Matrix

Freeze et al. (2013)

Matrix Rows =Features

Matrix Columns =Process / Events

 Matrix Cell contains all FEPs related to the

"Process/Event" acting upon or within the "Feature"

 e.g., hydro processes in the backfill

Features

- Top-Down from Specific Repository Phenomena
 - Example here is SNF/HLW Repository in Bedded Salt

■ Top-Down from Specific Repository Phenomena

Example here is Generic Near-Surface Facility (from Seitz 2014)

FEP Analysis - Top-Down, Bottom-Up Approaches

Bottom-Up Audit using UFD LLW list (381 FEPs)

External Factors = 76 FEPs

FEP Analysis – Top-Down, Bottom-Up Approaches

Specific FEP from UFD LLW list

FEP Number	FEP Title	FEP Description	FEP Screening (Included / Excluded)	Disposal Option (Near Surface / Borehole)	Basis for Exclusion
2.1.05.02	Engineered Covers and Their Degradation Processes	FEPs related to the performance of engineered cover materials above the emplaced waste vaults, trenches, etc. such as: - soil layers - rock armoring - low permeability layers (earthen materials, geotextiles, geomembranes) - drainage layers - side slopes / side fill Degradation processes include: - embrittlement, cracking - loss of ductility - movement - hydrostatic pressure - swellling corrosion products - chemical effect of water on polymeric materials - Fracturing of near field rock (such as by initial stresses during excavation, ice sheet loading/unloading or seismic activity) with subsequent impact on containers already compromised by other degradation mechanisms. Gas pressure may enhance cracking in the excavation disturbed zone.	Included		Jones (2011) did preliminary screening for two generic designs

Bottom-Up Audit using IAEA LLW FEP list (IAEA 2004)

Specific FEP

FEP 2.1.05 Engineered barrier system characteristics and degradation processes

Definition: FEPs related to the design, physical, chemical, hydraulic etc. characteristics of the cavern/tunnel/shaft seals at the time of sealing and closure and also as they may evolve in the repository, including FEPs which are relevant specifically as cavern/tunnel/shaft seal and cap degradation processes. (Effect on hydrology / flow – change over time).

Comment: Cavern/tunnel/shaft seal and cap failure may result from gradual degradation processes, or may be the result of a sudden event. The importance is that alternative routes for groundwater flow and radionuclide transport may be created along the various layers and tunnels and/or shafts and associated EDZ (see FEP 2.2.01).

Key Concepts, examples, and related FEPs:

- Engineered caps (cover)
- Cover degradation
- Intrusion resistance caps
- Cap materials: clay, concrete

Conclusions

- Practical FEP analysis can be performed at a level of effort commensurate with project scope and budget
 - Supports scenario development, PA modeling, and the safety case
- Top-down, bottom-up approach for LLW disposal
 - Top-down scenario development, supplemented by bottom-up FEP analysis
 - Identify key scenarios
 - Build a top-down feature-based organizational structure (e.g., matrix)
 - Map key scenarios, FEPs/phenomena
 - Use existing FEP lists for audit

References

- BSC (Bechtel SAIC Company) 2005. *The Development of the Total System Performance Assessment-License Application Features, Events, and Processes*. TDR-WIS-MD-000003 REV 02. Las Vegas, Nevada: Bechtel SAIC Company.
- DOE (U.S. Department of Energy) 1996. Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant. DOE/CAO-1996-2184. Twenty-one volumes. Carlsbad, New Mexico: U.S. Department of Energy, Carlsbad Area Office.
- DOE (U.S. Department of Energy) 2009. *Title 40 CFR Part 191 Subparts B and C Compliance Recertification Application for the Waste Isolation Pilot Plant, Appendix SCR-2009 Feature, Event, and Process Screening for PA.* DOE/WIPP 09-3424, U.S. Department of Energy, Carlsbad Area Office, Carlsbad, New Mexico.
- Freeze, G., Mariner, P., Houseworth, J.E., and Cunnane, J.C. 2010. *Used Fuel Disposition Campaign Features, Events, and Processes (FEPs): FY10 Progress Report.* SAND2010-5902, Sandia National Laboratories, Albuquerque, New Mexico.
- Freeze, G., Mariner, P., Blink, J.A., Caporuscio, F.A., Houseworth, J.E., and Cunnane, J.C. 2011. *Disposal System Features, Events, and Processes (FEPs): FY11 Progress Report.* SAND2011-6059P, Sandia National Laboratories, Albuquerque, New Mexico.
- Freeze, G. and Swift, P. 2010. *Comprehensive Consideration of Features, Events, and Processes (FEPs) for Repository Performance Assessments*. PSAM 10 Conference Proceedings. Seattle, Washington: International Association for Probabilistic Safety Assessment and Management.
- Freeze, G., Sevougian, S.D., and Gross, M. 2013. *Safety Framework for Disposal of Heat-Generating Waste in Salt: Features, Events, and Processes (FEPs) Classification*, FCRD-USED-2012-000431, SAND2012-10797P, Sandia National Laboratories, Albuquerque, New Mexico.
- Garisto, N.; Avis, J.; Fernandes, S.; Jackson, R.; Little, R.; Rees, J.; Towler, G. and Walke, R., July 2009, Deep Geologic Repository for OPG's Low and Intermediate Level Waste, Postclosure Safety Assessment (V1): Features, Events and Processes, NWMO DGR-TR-2009-05
- Guzowski, R. V. and Newman, G., December 1993, Preliminary Identification of Potentially Disruptive Scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site, SAND93-7100
- IAEA (International Atomic Energy Agency) 1983. *Concepts and Examples of Safety Analyses for Radioactive Waste Repositories in Continental Geological Formations*. Safety Series No. 58. Vienna, Austria: International Atomic Energy Agency.

References

- IAEA (International Atomic Energy Agency) 2004, Safety Assessment Methodologies for Near Surface Disposal Facilities, Results of a Co-ordinated Research Project
- IAEA (International Atomic Energy Agency). 2011. *Disposal of Radioactive Waste, Specific Safety Requirements*. IAEA Safety Standards Series No. SSR-5. Vienna, Austria: International Atomic Energy Agency.
- Jones, R.H. 2011. Features, Events, and Processes for the Disposal of Low Level Radioactive Waste FY 2011 Status Report, Revision 0, Prepared for U.S. Department of Energy Used Fuel Disposition Campaign, FCRD-USED-2011-000297
- NEA (Nuclear Energy Agency) 1992. Systematic Approaches to Scenario Development: A Report of the NEA Working Group on Identification and Selection of Scenarios for Performance Assessment of Radioactive Waste Disposal. Paris, France: Nuclear Energy Agency, Organisation for Economic Co-operation and Development.
- NEA (Nuclear Energy Agency) 1999. An International Database of Features, Events and Processes. Paris, France: Organisation for Economic Co-operation and Development.
- NEA (Nuclear Energy Agency) 2006. *The NEA International FEP Database: Version 2.1.* Paris, France: Organisation for Economic Co-operation and Development.
- NEA (Nuclear Energy Agency) 2012. Methods for Safety Assessment of Geological Disposal Facilities for Radioactive Waste, Outcomes of the NEA MeSA Initiative. NEA No. 6923. Paris, France: Organisation for Economic Co-Operation and Development, Nuclear Energy Agency.
- NRC (U.S. Nuclear Regulatory Commission) 2003. *Yucca Mountain Review Plan, Final Report*. NUREG-1804, Revision 2. Washington, D.C.: U.S. Nuclear Regulatory Commission.
- Phifer, M.; March 2011, 2002 LLW Repository PCSC FEP Consideration
- Seitz, R. 2014. Practical Considerations for Development and Selection of Scenarios. Presentation to PA&RA Community of Practice, Savannah River National Laboratory.
- SNL (Sandia National Laboratories) 2008. *Features, Events, and Processes for the Total System Performance Assessment: Analysis.* ANL-WIS-MD-000027 REV 01. Las Vegas, Nevada: Sandia National Laboratories.
- Tauxe, J. 2012. FEPs Approach and Lessons Learned at Clive, Utah. NRC Workshop on Performance Assessments of Near-Surface Disposal Facilities. Rockville, MD.

Backup Slides

FEP Analysis for SNF/HLW Disposal

- Early (mid 1980's) FEP lists were generic
 - IAEA (IAEA 1983)
 - US NRC (Cranwell et al. 1990)
 - NEA (NEA 1992)
- More recent (1990's) project-specific FEP lists and analyses are contained in the NEA FEP Database (NEA 1999, NEA 2006)
 - Canada AECL (Goodwin et al. 1994)
 - Switzerland NAGRA (NAGRA 1994)
 - USA DOE WIPP (DOE 1996)
 - Sweden SKI and SKB (Chapman et al. 1995; Miller et al. 2002)
 - UK HMIP (Miller and Chapman 1993)
 - Belgium SCK-CEN (Bronders et al. 1994)

FEP Analysis for SNF/HLW Disposal

Additional project specific FEP lists not contained in the NEA FEP database

- 1990s (summarized in NEA 1999)
 - Netherlands ECN/RIVM/RGD (Prij 1993)
 - Spain ENRESA (ENRESA 1995)
- 2000s
 - NEA Clay (Mazurek et al. 2003)
 - South Korea KAERI (Hwang et al. 2006)
 - USA DOE YMP (BSC 2005; SNL 2008; Freeze and Swift 2010)
 - USA DOE NE (Freeze et al. 2010; Freeze et al. 2011; Freeze et al. 2013)

- Bronders, J.; Patyn, J.; Wemaere, I.; and Marivoet, J. 1994. Long term Performance Studies, Catalogue of Events, Features and Processes Potentially Relevant to Radioactive Waste Disposal in the Boom Clay Layer at the Mol Site. SCK-CEN Report R-2987 Annex. Mol, Belgium
- Chapman, N.A.; Andersson, J.; Robinson, P.; Skagius, K.; Wene, C-O.; Wiborgh, M.; and Wingefors, S. 1995. Systems Analysis, Scenario Construction and Consequence Analysis Definition for SITE-94. SKI Report 95:26. Stockholm, Sweden: Swedish Nuclear Power Inspectorate.
- Cranwell, R.M.; Guzowski, R.V.; Campbell, J.E.; and Ortiz, N.R. 1990. *Risk Methodology for Geologic Disposal of Radioactive Waste, Scenario Selection Procedure*. NUREG/CR-1667. Washington, D.C.: U.S. Nuclear Regulatory Commission.
- ENRESA (Empresa Nacional de Residuos Radioactivos SA) 1995. Evaluación del Comportamiento Opción Granito.
 Identificación de Factores. Proyecto AGP, Fase II, 48-1p-I-00G-03
- Goodwin, B.W.; Stephens, M.E.; Davison, C.C.; Johnson, L.H.; and Zach, R. 1994. Scenario Analysis for the Postclosure Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal. AECL-10969. Pinawa, Manitoba, Canada: AECL Research, Whiteshell Laboratories.
- Hwang, Y.S; Kang, C.H.; and Soo, E.J. 2006. Development of the KAERI FEP, Scenario, and Assessment Method Database for Permanent Disposal of HLW in Korea. Progress in Nuclear Energy Volume 48, Issue 2 pp 165-172. Daejeon, South Korea: Korea Atomic Energy Research Institute.
- Mazurek, M.; Pearson, J.F.; Volckaert, G.; and Bock, H. 2003. Features, Events and Processes Evaluation Catalogue for Argillaceous Media. Paris, France: Organisation for Economic Co-Operation and Development, Nuclear Energy Agency.
- Miller, B.; Savage, D.; McEwen, T.; and White, M. 2002. *Encyclopaedia of Features, Events and Processes (FEPs) for the Swedish SFR and Spent Fuel Repositories, Preliminary Version*. SKI Report 02:35.
- Miller, W.M. and Chapman, N.A. 1993. HMIP Assessment of Nirex Proposals, Identification of Relevant Processes (System Concept Group Report). Technical Report IZ3185-TR1 (Edition 1). [London], United Kingdom: Her Majesty's Inspectorate of Pollution (HMIP), Department of the Environment.
- NAGRA (Nationale Genossenschaft für die Lagerung Radioaktiver Abfalle) 1994. *Kristallin-I, Safety Assessment Report*. NAGRA Technical Report 93-22. Wettingen, Switzerland: National Cooperative for the Disposal of Radioactive Waste.
- Prij, J. (editor) 1993. PROSA Probabilistic Safety Assessment Final Report. ECN, RIVM, RGD Report OPLA-1A. Petten, Netherlands