

A Novel Flash Ironmaking Process

DE-EE0005751

American Iron and Steel Institute/University of Utah 09/01/2012 - 8/31/2015

Joseph Vehec, American Iron and Steel Institute

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014

- Develop a new ironmaking process w/ significant reduction in energy consumption and CO₂ generation
- Blast furnace requires pelletization and/or sintering of iron ore concentrate
- Consumes large amounts of energy and carbon → CO₂ emissions
- Alternative ironmaking processes must have:
 - Large production capacities (e.g., ~1,000,000 tpy of iron)
 - Use the main raw material (i.e., iron ore) with minimal pretreatment

Technical Approach

Current practice

- Blast furnace (BF) produces >90% iron for steelmaking
- BF needs large capital investments
- High energy consumption in raw materials preparation and CO₂ emissions
- Use of special coals for cokemaking

New Approach – A Novel Flash Ironmaking Process

- Direct use of iron concentrate (~30 μm)
 - Bypass pelletizing and sintering
- Use of inexpensive, abundant natural gas [or hydrogen, coal gas]
 - No cokemaking required
 - Lower energy consumption
 - Less CO₂ emissions
- Rapid reaction rate and favorable Net Present Value (NPV)

Technical Approach

 Install, commission & conduct test on a new large bench reactor at the University of Utah

- Multidisciplinary team:
 - American Iron and Steel Institute
 - ArcelorMittal USA
 - The Timken Company
 - United States Steel Corporation
 - University of Utah (Lead Research Organization)
 - Berry Metal Company (Bench reactor fabrication)

Transition and Deployment

Project Objectives	Kinetic Feasibility Technology Road Map (2005-2007)	Proof of Concept at Lab Scale AISI CO ₂ Breakthrough (2008-2011)	Process Validation/ Scale-up Innovative Manufacturing Initiative (2012-2015)	Industrial Pilot TBD (2016+)
Experimental Apparatuses	Ceramic Reactor Alumina Honeycomb High-Temperature Furnace Heating Elements Powder Collector & Filter			Approaches 1. Large scale 75-100k tpy 2. Modest-scale: 10-25k tpy 3. Expand U of Utah work: Similar to bench reactor but larger
Funding	Federal, \$350k Industry, \$150k Total, \$500k	Federal, \$ 0 Industry, \$ 4.8million Total, \$4.8million	Federal, \$ 7.1million Industry, \$ 1.8million Total, \$8.9million	\$10 – 75million Funding TBD

Transition and Deployment

- Benefits steel users and steel-related industry
- U.S. Steel industry would be the end user
- To be used to produce iron as a raw material for steelmaking resulting in:
 - Direct use of iron ore concentrate
 - Low capital cost
 - Scalable to large capacities
 - Avoidance of cokemaking
- Commercialization through licensing & royalty
- Sustainable as a more energy efficient and green ironmaking step

- If successful, iron will be produced at a lower cost, using less energy, and emitting less CO₂
- Potential energy savings: ~3.5 GJ/ton Fe vs. avg. BF
- CO₂ emission: Less than 36% vs. avg. BF process

Metric	H ₂ -based process	Reformerless natural gas process	Blast Furnace process
Energy Requirement (GJ/ton of hot metal)	11.3	14.5	18.0
CO ₂ emission (tons/ton of hot metal)	0.04	1.02	1.60

NPV for standard case (15 year period): \$401M (2010)/(1 M tpy) Natural gas cost: \$5/M (2010) BTU HHV

Project Management & Budget

Task	Description	Milestones			
Lask		Key Inputs	Criteria	Date	
1	Bench Scale Reactor	Go/No Go Decision # 1:		1/31/2015	
	Installation	Operating Temperature	1400°C		
	Commissioning	Solid feed rate	>1 kg/hr		
		Operation time	>6 hr		
2	Testing Program	Go/No Go Decision # 2:		7/31/15	
	_ Existing lab flash reactor	Metallization	95%		
	Drop-tube reactor	Min. amt. reducing gas	3.ox		
	Bench reactor	Go/No Go Decision # 3:		1/31/16	
	_ CFD model	Metallization	95%		
		Min. amt. reducing gas	1.5X		
		Milestone # 4:		7/31/16	
		Metallization	95%		
		Solid feed rate	>5 kg/hr		
3	Industrial pilot reactor				
	Design				
	Cost estimate				
4	Program Administration			1/31/17	

Total Project Budget		
DOE Investment	\$7,120,000	
Cost Share	\$1,780,000	
Project Total	\$8,900,000	

- Fabricated New bench reactor and ancillary equipment
- Designed/fabricated main burner key component
- Prepared site for bench reactor installation
- Achieved 80-95% metallization in existing lab reactor*
- Fuel/reductant: Hydrogen
 - •[Natural gas tests are planned]
- Reaction time: 4-6 seconds
- Temperature: ~1200°C
 - •[less than 1300°C in bench reactor]

*Different from New Bench Reactor with respect to the size and material of construction, which limits the operating temperature. Solid feed rate is limited ($\sim 0.5 \text{ kg/hr}$).

Results and Accomplishments

- Measurement of reduction kinetics with natural gas using existing Lab reactor (2014)
- Computational Fluid Dynamic model development (2014-2016)
- Installation of new bench reactor (1Q15)
- Testing with new bench reactor (2015-2016)
- Industrial pilot plant design (2016)

