Ultra-Thin Antifouling Surface Treatments for Industrial Heat Exchangers

Contract Number DE-SC0003355 Applied Thin Films Inc. Project Period 2010 - 2012

> Sankar Sambasivan ATFI Founder, President & CEO www.afinet.com

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014

Project Objective

Problem Statement

•Fouling of heat exchangers is a serious problem in various energy intensive industries causing significant energy and productivity loss

Challenges

- •Identifying surface treatment that is durable in high temperature harsh environments
- •Suitable process to apply anti-fouling treatment on internal pipe surfaces of existing industrial infrastructure

ATFI Approach / Technology

•Develop and demonstrate anti-fouling properties of Cerablak[®] ultra thin films through field application installations

Technical Approach

How is it done today?

¹Digital Refining PTQ Q3 2013

Routinely Cleaned (Pigged) Units

ATFI Approach

Cerablak® UTF Glass Diffusion Barrier

•Pin-hole free, hermetic quality ultra thin film

•Alumina rich phosphate glass

-Under 1 μm thickness eliminates thermal shock, CTE issues

•Film prevents iron sulfide formation and coking⁴

Catalytic Coking Prevention

304 Stainless Steel Tube ID: Tulsa University Delayed Coking Project (TUDCP) *Micro Coker Test Evaluation*

Uncoated

Cerablak[®] UTF Coated

Technical Approach

Tachnology Comparison:

rechnology comp	a115011.	C2 Mist	Cerablak [®] UTF
C2 MIST coatings	General Description	Chemical solution based coating	Chemical solution based coating
Rare-earth Oxides	Film Type	Crystalline Oxide	Amorphous Glass
C3 LLC / ORNL	Heavy metals	Yes	No
Field Tested	TRL / MRL	9/9	9/9
Exclusively Licensed?	Process Cost Economics	Multi-Step	One Step

Transition and Deployment

Who Cares?

- •O&G (Initial Target)
- •Hydrogen Processing / Production
 - Nuclear
 - •Electric power gen
- Waste heat recovery
- •CSP / Solar
- •Coal Fired Power
- •Olefins Processing / Production
- Transportation
 - •Turbochargers
 - •Fuel Systems / Lines

Compact Welded Plate Heat Exchanger Aqueous Corrosion of Aluminum

Coal Fired Power Plant, Fireside Fly Ash Corrosion Midwest Generation, Homer City, PA

(still in service >3 years)

Transition and Deployment

Measure of Success

Delayed Coking Economics

²Wright, B. AiChE Chicago Symposium 2007 ³Downstream Today Feb 9 2012

Project Management and Budget

Results and Accomplishments

Successful Customer Field Demonstration

O&G Delayed Coker Unit: Spring 2013

- Two 3000 ft. long pipe assembly fired heaters
- Operating US delayed
 coker unit
- Refinery site approved installation process
 - SOP established
 - OSHA, EPA, EH+S regulatory approvals
 - Full scale chemical manufacturing, handling, and disposal

