Excavationless Exterior Foundation
Insulation Field Study

NorthernSTAR Building America Team
Garrett Mosiman, Tom Schirber & Cindy Ojczyk

Industry Partners:
Cocoon
BASF
American Environmental
Urban Homeworks
Context

Much of household space conditioning energy use, particularly in heating climates, can be attributed to lack of insulation on the basement wall and rim joist. Most existing houses have uninsulated foundations.

There are two potential locations for basement/rim insulation upgrades:

Interior insulation upgrade
- Existing foundations lack moisture control at the foundation face, and lack a capillary break at the sill.
- Interior insulation makes the wall colder, thus weaker. Interior insulation materials have low permeability, so walls stay wet.
- Rim and sill are particularly vulnerable to moisture accumulation and decay.
- Most insulation materials require an ignition barrier, adding to costs.
- Interior approaches that solve the hygrothermal issues are likely expensive.
- Conventional methods can lead to mold and health issues.

Exterior insulation upgrade
- Exterior foundation insulation confers multiple hygrothermal benefits, and missing moisture control materials can be added, or their importance to the hygrothermal regime diminished because the wall is warm, and can dry readily to the interior.
- Typical exterior approaches are costly, destructive to the landscape, and disruptive to homeowners.
- Capillary action can be an issue for both methods.
EXCAVATIONLESS

In order to achieve energy reduction goals, it will require some savings from foundations as well.

Could be applied to millions of homes that have up to now been considered problematic.

- Homes with finished basements
- Homes with inaccessible basement walls
- Homes with expensive landscaping
- Homes with crawl spaces
- Homes, townhomes, and apartment buildings with slab foundations
- Homes and buildings needing water proofing and drain tile
- Buildings that need foundation repair
- Insulation under porches and sidewalks

2010 Census

<table>
<thead>
<tr>
<th>Single unit buildings in U.S.</th>
<th>87,966</th>
</tr>
</thead>
<tbody>
<tr>
<td>With basement under all of building</td>
<td>28,274</td>
</tr>
<tr>
<td>With basement under part of building</td>
<td>9,104</td>
</tr>
<tr>
<td>With crawl space</td>
<td>19,650</td>
</tr>
<tr>
<td>On concrete slab</td>
<td>29,451</td>
</tr>
</tbody>
</table>
Value

Cost comparison table

(model is 36’ X 28’ foundation, 2’ exposed above grade, plus rim.

<table>
<thead>
<tr>
<th>Retrofit Approach</th>
<th>Insulation Type</th>
<th>Nominal Wall R Value</th>
<th>Material Cost</th>
<th>Labor cost</th>
<th>Excavation cost</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Full depth exterior rigid foam. From top of rim to bottom of trench.</td>
<td>3” XPS @ $1.25 per sq</td>
<td>R-15</td>
<td>$960 (plus $833 for water barrier)</td>
<td>$2,880</td>
<td>$2,920</td>
<td>$7,593</td>
</tr>
<tr>
<td>2) "Excavationless" exterior foam (4.5’ BG to grade) Plus 1.5’ AG.</td>
<td>Cast-in-place polyurethane foam (4”)</td>
<td>R-20 (ave)</td>
<td>$4,224 B.G. (1.50/brd ft.) $698 for rigid and foam above grade. included</td>
<td>$1,650</td>
<td>$1,650</td>
<td>$6,572</td>
</tr>
<tr>
<td>3) "Excavationless" exterior foam (6” bottom of trench to top of rim)</td>
<td>6’ - footing to rim top. 1.5” rigid plus 1.5” cast-in-place foam</td>
<td>R-15</td>
<td>$2,142 Foam $1,152 Rigid XPS $990 (labor included) included</td>
<td>$1,650</td>
<td>$1,650</td>
<td>$3,792</td>
</tr>
</tbody>
</table>

* Cost does not include landscaping remediation, which will likely be higher for “traditional” methods
Next house for Excavationless. TO5 “Best of NSTAR”. We will apply three of our tested measures: Excavationless, Overcoat for roof and wall, and Combi. This will be for affordable housing in North Minneapolis.