The Future of Bioenergy
Feedstock Production

Cornell University
June, 2013

John Ferrell
Feedstock Technology Lead
Bioenergy Technologies Office
US Department of Energy
Overview

- Bioenergy Technologies Office background
- Feedstock assessment, production and logistics
- Biomass yield improvements
- Sustainable feedstock production
- Future directions
Bioenergy Technologies Office

<table>
<thead>
<tr>
<th>EERE Goals: Reduce Dependence on Oil, Reduce Greenhouse Gas Emissions, and Create Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Strategies</td>
</tr>
</tbody>
</table>

| Program Approaches | Reduce costs and develop commodity-scale feedstock logistics systems | Reduce costs by increasing conversion yields and reducing conversion costs | Demonstrate and deploy technology at first-of-a-kind facilities | Establish production incentives for cellulosic biofuels | Develop approaches to support sustainability and best practices |

FEEDSTOCK SUPPLY & LOGISTICS

CONVERSION

BIOENERGY DISTRIBUTION

BIOENERGY END USE

Energy Efficiency & Renewable Energy
Feedstock supply and logistics efforts focus on RD&D to develop and optimize cost-effective and sustainable integrated systems for growing, harvesting, collecting, storing, preprocessing, handling, and transporting quality feedstock to biorefineries.
Feedstock Technology Area Partnerships

- Sun Grant Initiative: land-grant universities in partnership with industry, National Laboratories, and U.S. Department of Agriculture (USDA)
- National Laboratories
- Universities and industry
- Office of Science and ARPA-E
- Other agencies: USDA, DoD, DoI, DoT, EPA, NASA, NSF (Biomass R&D Board)
Feedstock Demand

Projected National Feedstock Demand from Biofuel and Biopower

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EISA (bg/y)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Feedstock Demand (bt/y)</td>
<td>44</td>
<td>60</td>
<td>76</td>
<td>102</td>
<td>129</td>
<td>155</td>
<td>325</td>
<td>325</td>
</tr>
</tbody>
</table>

Assumption of 85 gallons per dry ton of biomass

Bioenergy Technologies Office Multi-Year Program Plan
May, 2013
Figure 5.16: Potential production of energy crops at various years and farmgate prices in baseline scenario.
Yield Improvements

Herbaceous Energy Crops (Land Resource Regions 1–6)

Woody Energy Crops (Land Resource Regions 1, 2, 3, 4, & 7)

Workshop Report: High Yield Scenario Workshop Series
Prepared by Idaho National Laboratory
Challenge: Expanding to commercial-scale volumes while delivering on the promise of clean renewable energy requires proactively:

1. Understanding resource availability
2. Considering complex policy, socioeconomic, market, and environmental factors
3. Developing beneficial collaborative solutions with diverse stakeholders
4. Promoting technologies and best practices that enable a viable, large-scale advanced biofuels industry
Current Efforts

• Watershed Modeling
 – Multiple scales, feedstocks, and regions

• Field Research
 – Best practices for bioenergy feedstock production

Bioenergy Crop Workshop, March 2013 in Fairbury, Illinois (ANL)
Future Directions

- Meet feedstock availability targets
- Meet feedstock cost targets
- Meet feedstock quality targets
- Meet sustainability

- Improve assessments by better understanding drivers of availability and production
- Work with partners to increase yields
- Improve quality and reduce costs by using Uniform Format Supply system
- Meet sustainability through management systems and landscape modeling
- Complete techno-economics and data delivery for improved deployment
Feedstock Yield and Management Development

• New commercial varieties tested, “Best Local Varieties” identified via SGI Regional Feedstock Partnership (40+ Institutions)

• Synthesis of field trials to create site potential yield based upon best reasonable management practices

• Expert meetings for each crop team (energy cane, switchgrass, Miscanthus x Giganteus, willow, poplar, CRP grasses, biomass sorghum)
Feedstocks: Vision for the Future

Commodity feedstock supply system supports an expanding bioenergy industry by sustainably and economically supplying an on-spec feedstock to future biorefineries.
Bioenergy KDF Resources

• Composite Aggregation Tools

 - Export custom aggregations of feedstock resource types at all price points for various years

• Data Download Tool

• Data on Feedstock Quality and Characteristics – INL Resource Library

https://bioenergykdf.net/
1. Energy crop yield is a driving factor for availability and cost. Yield also has a significant role in feedstock quality (blended and uniform format) and sustainability (less land, water, inputs, etc.).

2. Need better integration of the biological sciences with BETO’s engineering, chemical, and socio-economic sciences to overcome the availability, cost, and quality barriers.

3. Dependent on partners and collaborators working on yield, ecological, and environmental issues to help meet Office goals, but more importantly, overcome barriers to commercialization of energy crops and enhancement/facilitation of the bioeconomy.

4. Symbiosis workshop is such a step by developing collaborations and fostering an integrated approach to increased feedstock production at decreased costs.

5. Inclusion of climate variability and resulting impacts on feedstock performance is a novel and timely topic. Providing a solution through the utilization of mutualistic symbionts is an approach to be considered along with other genetic tools.