Integrated Biorefinery for the Direct Production of Synthetic Fuel from Waste Carbonaceous Feedstocks

Dennis Schuetzle, PhD, President, REI International

> BETO IDL Workshop Golden, CO

> > March 20, 2014

General Overview Project Description and Objectives

Flared NG

Confidential

2

General Overview Project Description and Objectives

Sacramento, CA Toledo, OH Wood (0.15"-2.00" chips) and Rice Hulls (whole) 2.5 - 25 ton / day 56 gal/daft of transportation fuel

Rice Harvest Residues

Wood Residues

Direct Production of "Drop-In" Synthetic Fuels from Carbonaceous Resources using Thermochemical Processes – Unit Processes

Project Description

25 tpd Integrated Biorefinery (IBR) Plant [Construction Completed (3/2012)]

Thermochemical Conversion (TCC) System (Unit Processes #1-4A)

Liquid Fuel Production System (Unit Processes #4b-#8)

2- Technical Performance Synthetic Diesel Fuel Tests on Heavy-Duty Diesel Engines

2 – Technical Performance Results of Heavy Duty Diesel Engine Tests

The % Difference in Emissions between the 20% Synthetic Diesel Fuel Blend and Certification Diesel Fuel

% Difference	Emission Species (grams/Kw-hr)						
(20% Blend vs. Certification Fuel)	THC	CH ₄	NM HC	NOx	СО	CO ₂	PM
Engine Out Emissions	-10.0	-9.2	-10.0	No Diff.	-11.0	-0.8	-21.0
Tail-Pipe Emissions (after control)	Near zero	Near zero	Near zero	Below 0.20 EPA std.	-16.0	-0.8	Near zero

The Difference in Fuel Economy, Work and Power at 1,200-1,600 rpm for the 20% Synthetic Diesel Blend compared to the EPA/CARB Certification Fuel

BSFC Fuel	Work	Power
Economy (miles/gallon)	Output (KW-hr)	Output (KW-hr)
+ 0.7	+ 0.3	- 0.6

2 – Technical Performance Synthetic Diesel Fuel Tests on In-Use Diesel Vehicles

Emissions Relative to Typical CA Diesel Fuel for In-Use (2000-2008) Diesel Vehicles

Technologies Successfully Validated & Additional RD&D Needed for Successful Deployment of Commercial Scale IBR Plants

IBR Plant - Unit Processes		
Additional RD&D Needed for Successful Commercial Deployment		
UP #1 – Upgrade and validate the current ram charge feeder to insure robustness and reliable operation over the life of the IBR plant		
UP #2 – Increase the capacity of the ash removal system to handle high ash content feedstocks		
UP #3 – Design, build and validate a less costly and more energy efficient gases steam reforming system		
UP #9 – Select and validate an efficient and inexpensive fuel distillation process		
Technologies Successfully Validated and Ready for Commercial Deployment		
UP #4a – The IBR syngas purification system is directly applicable to the commercial scale plants		
UP #4b-#8 – The liquid fuel production system is robust and immediately applicable for the commercial scale application		
The IBR control systems and plant safety systems are directly applicable to the commercial scale plants		
	12	

Technologies Successfully Validated & Additional RD&D Needed for Successful Deployment of Commercial Scale IBR Plants

IBR Plant - Unit Processes		
Additional RD&D Needed for Successful Commercial Deployment		
Current syngas flow measurement systems are not reliable and more accurate and robust systems need to be developed and validated	FEL-1	
Technologies Successfully Validated and Ready for Commercial Deployment		
Several, suitable U.S. equipment suppliers have been identified for the design and manufacture of the modular unit processes, instrumentation, control systems and components (e.g. valves)		
A catalyst manufacturing capability has been validated for multi-ton quantity production of high quality catalysts		

Technologies Successfully Validated & Additional RD&D Needed for Successful Deployment of Commercial Scale IBR Plants

IBR Plant - Environmental		
Additional RD&D Needed for Successful Commercial Deployment		
Determine the potential of using the LFP water discharge for agriculture and other "gray water" uses		
Technologies Successfully Validated and Ready for Commercial Deployment		
Incorporate low emission gas burners for heating unit processes #2 & #3		

Upgrade and Validate the Biomass Feed Introduction System

Upgrade and Validate the Biomass Feed Introduction System

<u>Unit Process #1</u> Biomass Feed & Processing	Technical Target	Results Achieved
Biomass input rate	25 dtpd	24 dtpd
Remove air (O_2) with CO_2 purge	< 500 ppm O ₂	< 500 ppm O ₂
Biomass size input	1.25" Minus	0.15-2.50"

Findings:

>Very finely ground feedstock (<0.15") can collect on the ram charge feeder seals causing leaks and become entrained into the gas stream and into unit process #3 which can adversely impacts carbon conversion and syngas purification efficiency.

>Feedstock greater than 1" in diameter is more difficult to convert.

>The introduction chamber needs to be emptied between runs.

➢For commercial scale plants, the valves need to be re-designed and thoroughly tested to insure robust operation.

Biomass Feed Introduction System Cause-Effect Diagram used for System Upgrading

Recommended Upgraded Design for Biomass Feed Introduction System

