Integrated Biorefinery for the Direct Production of Synthetic Fuel from Waste Carbonaceous Feedstocks

Dennis Schuetzle, PhD, President,
REI International

BETO IDL Workshop
Golden, CO

March 20, 2014
General Overview
Project Description and Objectives

Stage 1
Syngas Production

Stage 3
Catalytic Conversion

Stage 4
Distribution of Synthetic Fuels

Biomass Residues
Biomass Crops
CO₂ Emissions
Natural Gas
Flared NG

Thermochemical Conversion

Direct “Drop-In Fuel Production (new PRF technology)

Wax Production (old technology - Sasol, Shell, etc.)

Premium, Synthetic Fuel

Refinery Processing
Hydro-Cracking Isomerization

Confidential
General Overview
Project Description and Objectives

<table>
<thead>
<tr>
<th>REII Headquarters:</th>
<th>Sacramento, CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Location:</td>
<td>Toledo, OH</td>
</tr>
<tr>
<td>Feedstock:</td>
<td>Wood (0.15”-2.00” chips) and Rice Hulls (whole)</td>
</tr>
<tr>
<td>Feedstock Input:</td>
<td>2.5 - 25 ton / day</td>
</tr>
<tr>
<td>Product Output:</td>
<td>56 gal/daft of transportation fuel</td>
</tr>
</tbody>
</table>

Thermochemical Conversion (TCC)
Pyrolysis & Steam Reforming

Liquid Fuel Production (LFP)
Direct Fuel Production

Rice Harvest Residues
Wood Residues
Syngas
Diesel
Direct Production of “Drop-In” Synthetic Fuels from Carbonaceous Resources using Thermochemical Processes – Unit Processes
Project Description

25 tpd Integrated Biorefinery (IBR) Plant [Construction Completed (3/2012)]
Thermochemical Conversion (TCC) System
(Unit Processes #1-4A)
Liquid Fuel Production System
(Unit Processes #4b-#8)
Carbon Mass Conversion Efficiency (Wood)

- Ash (Average % C Conversion = 85%)
- Syngas (Average % C Conversion = 90%)

Wood Carbon Mass Conversion Efficiency
2- Technical Performance
Synthetic Diesel Fuel Tests on Heavy-Duty Diesel Engines
2 – Technical Performance
Results of Heavy Duty Diesel Engine Tests

The % Difference in Emissions between the 20%
Synthetic Diesel Fuel Blend and Certification Diesel Fuel

<table>
<thead>
<tr>
<th>% Difference (20% Blend vs. Certification Fuel)</th>
<th>Emission Species (grams/Kw-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THC</td>
</tr>
<tr>
<td>Engine Out Emissions</td>
<td>-10.0</td>
</tr>
<tr>
<td>Tail-Pipe Emissions (after control)</td>
<td>Near zero</td>
</tr>
</tbody>
</table>

The Difference in Fuel Economy, Work and Power at 1,200-1,600 rpm for the 20%
Synthetic Diesel Blend compared to the EPA/CARB Certification Fuel

<table>
<thead>
<tr>
<th>BSFC Fuel Economy (miles/gallon)</th>
<th>Work Output (KW-hr)</th>
<th>Power Output (KW-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 0.7</td>
<td>+ 0.3</td>
<td>- 0.6</td>
</tr>
</tbody>
</table>
Emissions Relative to Typical CA Diesel Fuel for In-Use (2000-2008) Diesel Vehicles

- CO: -40 to 0
- HC's: -35 to -5
- NO\textsubscript{x}: -25 to -15
- Particulates: -20 to -10
IBR Plant - Unit Processes

Additional RD&D Needed for Successful Commercial Deployment

<table>
<thead>
<tr>
<th>Process Description</th>
<th>FEL Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP #1 – Upgrade and validate the current ram charge feeder to insure robustness and reliable operation over the life of the IBR plant</td>
<td>FEL-1</td>
</tr>
<tr>
<td>UP #2 – Increase the capacity of the ash removal system to handle high ash content feedstocks</td>
<td>FEL-1</td>
</tr>
<tr>
<td>UP #3 – Design, build and validate a less costly and more energy efficient gases steam reforming system</td>
<td>FEL-1</td>
</tr>
<tr>
<td>UP #9 – Select and validate an efficient and inexpensive fuel distillation process</td>
<td>FEL-1</td>
</tr>
</tbody>
</table>

Technologies Successfully Validated and Ready for Commercial Deployment

<table>
<thead>
<tr>
<th>Process Description</th>
<th>FEL Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP #4a – The IBR syngas purification system is directly applicable to the commercial scale plants</td>
<td>FEL-2</td>
</tr>
<tr>
<td>UP #4b-#8 – The liquid fuel production system is robust and immediately applicable for the commercial scale application</td>
<td>FEL-3</td>
</tr>
<tr>
<td>The IBR control systems and plant safety systems are directly applicable to the commercial scale plants</td>
<td>FEL-3</td>
</tr>
</tbody>
</table>
IBR Plant - Unit Processes

<table>
<thead>
<tr>
<th>Technologies Successfully Validated & Additional RD&D Needed for Successful Deployment of Commercial Scale IBR Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional RD&D Needed for Successful Commercial Deployment</td>
</tr>
<tr>
<td>Current syngas flow measurement systems are not reliable and more accurate and robust systems need to be developed and validated</td>
</tr>
<tr>
<td>Technologies Successfully Validated and Ready for Commercial Deployment</td>
</tr>
<tr>
<td>Several, suitable U.S. equipment suppliers have been identified for the design and manufacture of the modular unit processes, instrumentation, control systems and components (e.g. valves)</td>
</tr>
<tr>
<td>A catalyst manufacturing capability has been validated for multi-ton quantity production of high quality catalysts</td>
</tr>
<tr>
<td>IBR Plant - Environmental</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Additional RD&D Needed for Successful Commercial Deployment</td>
</tr>
<tr>
<td>Determine the potential of using the LFP water discharge for agriculture and other “gray water” uses</td>
</tr>
<tr>
<td>Technologies Successfully Validated and Ready for Commercial Deployment</td>
</tr>
<tr>
<td>Incorporate low emission gas burners for heating unit processes #2 & #3</td>
</tr>
</tbody>
</table>
1. Biomass Feed and Processing

Upgrade and Validate the Biomass Feed Introduction System
Upgrade and Validate the Biomass Feed Introduction System
Upgrade and Validate the Biomass Feed Introduction System
Unit Process #1
Biomass Feed & Processing

<table>
<thead>
<tr>
<th></th>
<th>Technical Target</th>
<th>Results Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass input rate</td>
<td>25 dtpd</td>
<td>24 dtpd</td>
</tr>
<tr>
<td>Remove air (O(_2)) with CO(_2) purge</td>
<td>< 500 ppm O(_2)</td>
<td>< 500 ppm O(_2)</td>
</tr>
<tr>
<td>Biomass size input</td>
<td>1.25” Minus</td>
<td>0.15-2.50”</td>
</tr>
</tbody>
</table>

Findings:
- Very finely ground feedstock (<0.15”) can collect on the ram charge feeder seals causing leaks and become entrained into the gas stream and into unit process #3 which can adversely impacts carbon conversion and syngas purification efficiency.
- Feedstock greater than 1” in diameter is more difficult to convert.
- The introduction chamber needs to be emptied between runs.
- For commercial scale plants, the valves need to be re-designed and thoroughly tested to insure robust operation.
Biomass Feed Introduction System
Cause-Effect Diagram used for System Upgrading

Biomass Physico-Chemical Properties
- Type of biomass
- Moisture Content
- Compressibility
- Contaminants
 - Particle size
 - Size distribution
 - Bulk density

Operational Variables
- Start-up conditions
- Shut down conditions
- Carrier gas used
- Feeding rate
- High feeding line temperature
- Pressure
- Piston Frequency
- Feeding rate
- Distance between piston and cylinder
- Lubrication method
- Maximum design torque
- Type of feeder
- Shape and size of piston
- Contamination

Design Variables
- Type of feeder
- Shape and size of hopper and feeding line
- Instrumentation and control system
- Cooling system

Clogging and compaction in the feeding system
Recommended Upgraded Design for Biomass Feed Introduction System